Isabelle/Circus

Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel and Burkhart Wolff

August 28, 2014

Abstract

The Circus specification language combines elements for complex data and behavior specifications, using an integration of Z and CSP with a refinement calculus. Its semantics is based on Hoare and He’s unifying theories of programming (UTP).

Isabelle/Circus is a formalization of the UTP and the Circus language in Isabelle/HOL. It contains proof rules and tactic support that allows for proofs of refinement for Circus processes (involving both data and behavioral aspects).

This environment supports a syntax for the semantic definitions which is close to textbook presentations of Circus.

These theories are presented with details in [9]. This document is a technical appendix of this report.

Contents

1 Introduction 5

2 Background 6

2.1 Isabelle, HOL and Isabelle/HOL 6
2.1.1 isar .. 6
2.1.2 Higher-order logic (HOL) 6
2.1.3 Isabelle/HOL 6

2.2 Advanced Specification Constructs in Isabelle/HOL 6
2.2.1 Constant definitions. 6
2.2.2 Type definitions. 7
2.2.3 Extensible records. 7

2.3 Circus and its UTP Foundation 8
2.3.1 Predicates and Relations. 8
2.3.2 Designs and processes. 9
3 Isabelle/Circus
 3.1 Alphabets and Variables 11
 3.1.1 Updating and accessing global variables. 11
 3.1.2 Updating and accessing local variables. 12
 3.2 Synchronization infrastructure: Name sets and channels. 13
 3.2.1 Name sets. .. 13
 3.2.2 Channels. .. 13
 3.3 Actions and Processes 14
 3.3.1 Basic actions. 15
 3.3.2 The universal assignment action. 15
 3.3.3 Communications. 16
 3.3.4 Hiding. ... 17
 3.3.5 Recursion. ... 18
 3.3.6 Circus Processes. 18

4 Using Isabelle/Circus 18
 4.1 Writing specifications 19
 4.2 Relational and Functional Refinement in Circus 20
 4.3 Refinement Proofs 20

5 Conclusions .. 22

6 Acknowledgement 23

7 Pre-declaration of user commands to workaround statefulness of outer syntax 24

8 UTP variables .. 25

9 Predicates and relations 25
 9.1 Definitions ... 26
 9.2 Proofs .. 27
 9.2.1 Setup of automated tools 28
 9.2.2 Misc lemmas 29

10 Designs ... 35
 10.1 Definitions .. 35
 10.2 Proofs ... 36

11 Reactive processes 39
 11.1 Preliminaries 39
 11.2 Definitions .. 42
 11.3 Proofs ... 43
12 CSP processes

12.1 Definitions .. 48
12.2 Proofs .. 49
12.3 CSP processes and reactive designs 56

13 Circus actions

13.1 Definitions .. 57
13.2 Proofs .. 58

14 Circus variables

15 Denotational semantics of Circus actions

15.1 Skip ... 69
15.2 Stop .. 70
15.3 Chaos .. 72
15.4 State update actions 72
15.5 Sequential composition 75
15.6 Internal choice ... 76
15.7 External choice ... 76
15.8 Reactive design assignment 77
15.9 Local state external choice 77
15.10 Schema expression ... 78
15.11 Parallel composition 78
15.12 Local parallel block 81
15.13 Assignment .. 81
15.14 Variable scope ... 82
15.15 Guarded action .. 84
15.16 Prefixed action ... 86
15.17 Hiding .. 89
15.18 Recursion .. 90

16 Circus syntax

17 Refinement and Simulation

17.1 Definitions .. 98
17.2 Proofs .. 99

18 Concrete example

18.1 Process definitions ... 106
18.2 Simulation proofs ... 106
1 Introduction

Many systems involve both complex (sometimes infinite) data structures and interactions between concurrent processes. Refinement of abstract specifications of such systems into more concrete ones, requires an appropriate formalisation of refinement and appropriate proof support.

There are several combinations of process-oriented modeling languages with data-oriented specification formalisms such as Z or B or CASL; examples are discussed in [3, 10, 17, 14]. In this paper, we consider Circus [18], a language for refinement, that supports modeling of high-level specifications, designs, and concrete programs. It is representative of a class of languages that provide facilities to model data types, using a predicate-based notation, and patterns of interactions, without imposing architectural restrictions. It is this feature that makes it suitable for reasoning about both abstract and low-level designs.

We present a “shallow embedding” of the Circus semantics enabling state variables and channels in Circus to have arbitrary HOL types. Therefore, the entire handling of typing can be completely shifted to the (efficiently implemented) Isabelle type-checker and is therefore implicit in proofs. This drastically simplifies definitions and proofs, and makes the reuse of standardized proof procedures possible. Compared to implementations based on a “deep embedding” such as [19] this significantly improves the usability of the resulting proof environment.

Our representation brings particular technical challenges and contributions concerning some important notions about variables. The main challenge was to represent alphabets and bindings in a typed way that preserves the semantics and improves deduction. We provide a representation of bindings without an explicit management of alphabets. However, the representation of some core concepts in the unifying theories of programming (UTP) and Circus constructs (variable scopes and renaming) became challenging. Thus, we propose a (stack-based) solution that allows the coding of state variables scoping with no need for renaming. This solution is even a contribution to the UTP theory that does not allow nested variable scoping. Some challenging and tricky definitions (e.g. channels and name sets) are explained in this paper.

This paper is organized as follows. The next section gives an introduction to the basics of our work: Isabelle/HOL, UTP and Circus with a short example of a Circus process. In Section 3, we present our embedding of the basic concepts of Circus (alphabet, variables ...). We introduce the representation of some Circus actions and process, with an overview of the Isabelle/Circus syntax. In Section 4, we show on an example, how Isabelle/Circus can be used to write specifications. We give some details on what is happening “behind the scenes” when the system parses each part of the specification. In the last part of this section, we show how to write proofs based on speci-
ifications, and give a refinement proof example. A more developed version of this paper can be found in [9].

2 Background

2.1 Isabelle, HOL and Isabelle/HOL

2.1.1 isar

[12] is a generic theorem prover implemented in SML. It is based on the so-called “LCF-style architecture”, which makes it possible to extend a small trusted logical kernel by user-programmed procedures in a logically safe way. New object logics can be introduced to Isabelle by specifying their syntax and semantics, by deriving its inference rules from there and program specific tactic support for the object logic. Isabelle is based on a typed λ-calculus including a Haskell-style type-system with type-classes (e.g. in α :: order, the type-variable ranges over all types that posses a partial ordering.)

2.1.2 Higher-order logic (HOL)

[7, 1] is a classical logic based on a simple type system. It provides the usual logical connectives like \(\land \), \(\lor \), \(\rightarrow \), \(\neg \) as well as the object-logical quantifiers \(\forall x \cdot P x \) and \(\exists x \cdot P x \); in contrast to first-order logic, quantifiers may range over arbitrary types, including total functions \(f :: \alpha \Rightarrow \beta \). HOL is centered around extensional equality \(= :: \alpha \Rightarrow \alpha \Rightarrow \text{bool} \). HOL is more expressive than first-order logic, since, e.g., induction schemes can be expressed inside the logic. Being based on some polymorphically typed λ-calculus, HOL can be viewed as a combination of a programming language like SML or Haskell and a specification language providing powerful logical quantifiers ranging over elementary and function types.

2.1.3 Isabelle/HOL

is an instance of Isabelle with higher-order logic. It provides a rich collection of library theories like sets, pairs, relations, partial functions lists, multi-sets, orderings, and various arithmetic theories which only contain rules derived from conservative, i.e. logically safe definitions. Setups for the automated proof procedures like simp, auto, and arithmetic types such as int are provided.

2.2 Advanced Specification Constructs in Isabelle/HOL

2.2.1 Constant definitions.

In its easiest form, constant definitions are definitional logical axioms of the form \(c \equiv E \) where \(c \) is a fresh constant symbol not occurring in \(E \) which is
closed (both wrt. variables and type variables). For example:

definition upd:: \((\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \Rightarrow (\alpha \Rightarrow \beta)\) ("_L_ := _\)
where "upd f x v \equiv \lambda z. if x=z then v else f z"

The pragma ("_L_ := _\) for the Isabelle syntax engine introduces the notation \(f(x:=y)\) for \(\text{upd } f \ x \ y\). Moreover, some elaborate preprocessing allows for recursive definitions, provided that a termination ordering can be established. Such recursive definitions are thus internally reduced to definitional axioms.

2.2.2 Type definitions.

Types can be introduced in Isabelle/HOL in different ways. The most general way to safely introduce new types is using the \texttt{typedef} construct. This allows introducing a type as a non-empty subset of an existing type. More precisely, the new type is specified to be isomorphic to this non-empty subset. For instance:

\texttt{typedef mytype = \{x::nat. x < 10\}"

This definition requires that the set is non-empty: \(\exists x. x \in \{x::nat. x<10\}\), which is easy to prove in this case:

\texttt{by (rule_tac x = 1 in exI, simp)

where \texttt{rule_tac} is a tactic that applies an introduction rule, and \texttt{exI} corresponds to the introduction of the existential quantification.

Similarly, the \texttt{datatype} command allows the definition of inductive datatypes. It introduces a datatype using a list of constructors. For instance, a logical compiler is invoked for the following introduction of the type \texttt{option}:

\texttt{datatype \alpha option = None \mid Some \alpha

which generates the underlying type definition and derives distinctness rules and induction principles. Besides the constructors \texttt{None} and \texttt{Some}, the following match-operator and his rules are also generated:

\texttt{case x of None \Rightarrow... \mid Some a \Rightarrow...
δ, i.e. in this case by a triple of the type \(T_1 \times T_2 \times δ \). The third component can be referenced by a special selector more available on extensible records. Thus, the record \(T \) can be extended later on using the syntax:

\[
\text{record } ET = T + c::T_3
\]

The key point is that theorems can be established, once and for all, on \(T \) types, even if future parts of the record are not yet known, and reused in the later definition and proofs over \(ET \)-values. Using this feature, we can model the effect of defining the alphabet of UTP processes incrementally while maintaining the full expressivity of HOL wrt. the types of \(T_1, T_2 \) and \(T_3 \).

2.3 Circus and its UTP Foundation

Circus is a formal specification language [18] which integrates the notions of states and complex data types (in a Z-like style) and communicating parallel processes inspired from CSP. From Z, the language inherits the notion of a schema used to model sets of (ground) states as well as syntactic machinery to describe pre-states and post-states; from CSP, the language inherits the concept of communication events and typed communication channels, the concepts of deterministic and non-deterministic choice (reflected by the process combinators \(P \parallel P' \) and \(P \cap P' \)), the concept of concealment (hiding) \(P \setminus A \) of events in \(A \) occurring in in the evolution of process \(P \). Due to the presence of state variables, the Circus synchronous communication operator syntax is slightly different frome CSP: \(P \parallel n \mid c \mid n' \parallel P' \) means that \(P \) and \(P' \) communicate via the channels mentioned in \(c \); moreover, \(P \) may modify the variables mentioned in \(n \) only, and \(P' \) in \(n' \) only, \(n \) and \(n' \) are disjoint name sets.

Moreover, the language comes with a formal notion of refinement based on a denotational semantics. It follows the failure/divergence semantics [15], (but coined in terms of the UTP [13]) providing a notion of execution trace \(\text{tr} \), refusals \(\text{ref} \), and divergences. It is expressed in terms of the UTP [11] which makes it amenable to other refinement-notions in UTP. Figure 1 presents a simple Circus specification, FIG, the fresh identifiers generator.

2.3.1 Predicates and Relations.

The UTP is a semantic framework based on an alphabetized relational calculus. An alphabetized predicate is a pair \((\text{alphabet}, \text{predicate})\) where the free variables appearing in the predicate are all in the alphabet, e.g. \((\{x, y\}, x > y) \). As such, it is very similar to the concept of a schema in Z. In the base theory Isabelle/UTP of this work, we represent alphabetized predicates by sets of (extensible) records, e.g. \(\{A. \; x \; A \; > \; y \; A\} \).

An alphabetized relation is an alphabetized predicate where the alphabet is composed of input (undecorated) and output (dashed) variables. In this
channel \textit{req}
channel \textit{ret, out : ID}

process \(FIG \equiv \begin{align*}
\text{state } S &= [idS : \mathbb{P} \ ID] \\
\text{Init} \equiv idS := \emptyset
\end{align*}

\begin{align*}
\text{Out} \quad &\begin{cases}
\Delta S \\
v! : \ ID
\end{cases} \\
n\notin idS \\
idS' = idS \cup \{v!\}
\end{align*}

\begin{align*}
\text{Remove} \quad &\begin{cases}
\Delta S \\
x? : \ ID
\end{cases} \\
idS' = idS \setminus \{x?\}
\end{align*}

- \(\text{Init} \; \textbf{var} \ v : \ ID \; \textbf{end}\)

\begin{align*}
(\mu X \bullet (\text{req} \rightarrow \text{Out} ; \text{out}!v \rightarrow \text{Skip} \; \square \text{ref} ? x \rightarrow \text{Remove}) ; X)
\end{align*}

\vspace{0.5em}
Figure 1: The Fresh Identifiers Generator in (Textbook) Circus

Case the predicate describes a relation between input and output variables, for example \((\{x, x', y, y'\}, x' = x + y)\) which is a notation for: \(\{(A, A') \cdot x \\ A' = x \ A + y \ A\}\), which is a set of pairs, thus a relation.

Standard predicate calculus operators are used to combine alphabetized predicates. The definition of these operators is very similar to the standard one, with some additional constraints on the alphabets.

\subsection{2.3.2 Designs and processes.}

In UTP, in order to explicitly record the termination of a program, a subset of alphabetized relations is introduced. These relations are called \textit{designs} and their alphabet should contain the special boolean observational variable \textit{ok}. It is used to record the start and termination of a program. A UTP design is defined as follows in Isabelle:

\((P \vdash Q) \equiv \lambda (A, A'). (\text{ok} A \land P (A, A')) \rightarrow (\text{ok} A' \land Q (A, A'))\)

Following the way of UTP to describe reactive processes, more observational variables are needed to record the interaction with the environment. Three observational variables are defined for this subset of relations: \textit{wait}, \textit{tr} and \textit{ref}. The boolean variable \textit{wait} records if the process is waiting for an interaction or has terminated. \textit{tr} records the list (trace) of interactions the process has performed so far. The variable \textit{ref} contains the set
of interactions (events) the process may refuse to perform. These observ-
vational variables defines the basic alphabet of all reactive processes called "alpha_rp".

Some healthiness conditions are defined over wait, tr and ref to ensure that a reactive process satisfies some properties [6] (see Table 2 in [9]).

A CSP process is a UTP reactive process that satisfies two additional healthiness conditions (all well-formedness conditions can be found in [9]). A process that satisfies these conditions is said to be CSP healthy.

3 Isabelle/Circus

Process ::= circusprocess Tpar* name = PParagraph* where Action
PParagraph ::= AlphabetP | StateP | ChannelP | NamesetP | ChansetP | SchemaP
 | ActionP
AlphabetP ::= alphabet [vardecl+]
vardecl ::= name :: type
StateP ::= state [vardecl+]
ChannelP ::= channel [chandecl+]
chandecl ::= name | name type
NamesetP ::= nameset name = [name+]
ChansetP ::= chanset name = [name+]
SchemaP ::= schema name = SchemaExpression
ActionP ::= action name = Action
Action ::= Skip | Stop | Action ; Action | Action □ Action | Action □ Action
 | Action \ chansetN | var := expr | guard & Action | comm → Action
 | Schema name | ActionName | μ var @ Action | var var @ Action
 | Action [namesetN | chansetN | namesetN] Action

Figure 2: Isabelle/Circus syntax

The Isabelle/Circus environment allows a syntax of processes which is close to the textbook presentations of Circus (see Fig. 2). Similar to other specification constructs in Isabelle/HOL, this syntax is “parsed away”, i.e. compiled into an internal representation of the denotational semantics of Circus, which is a formalization in form of a shallow embedding of the (essentially untyped) paper-and-pencil definitions by Oliveira et al. [13], based on UTP. Circus actions are defined as CSP healthy reactive processes.

In the UTP representation of reactive processes we have given in a previous paper [8], the process type is generic. It contains two type parameters that represent the channel type and the alphabet of the process. These parameters are very general, and they are instantiated for each specific process. This could be problematic when representing the Circus semantics, since some definitions rely directly on variables and channels (e.g. assignment and communication). In this section we present our solution to deal
with this kind of problems, and our representation of the *Circus* actions and processes.

We now describe the foundation as well as the semantic definition of some process operators of *Circus*. A distinguishing feature of *Circus* processes are explicit state variables which do not exist in other process algebras like, e.g., CSP. These can be:

- *global* state variables, *i.e.* they are declared via alphabetized predicates in the *state* section, or Z-like Δ operations on global states that generate alphabetized relations, or

- *local* state variables, *i.e.* they are result of the variable declaration statement `var var @ Action`. The scope of local variables is restricted to `Action`.

On both kind of state variables, logical constraints may be expressed.

3.1 Alphabets and Variables

In order to define the set of variables of a specification, the *Circus* semantics considers the alphabet of its components, be it on the level of alphabetized predicates, alphabetized relations or actions. We recall that these items are represented by sets of records or sets of pairs of records. The *alphabet of a process* is defined by extending the basic reactive process alphabet (cf. Section 2.3.2) by its variable names and types. For the example *FIG*, where the global state variable `idS` is defined, this is reflected in Isabelle/Circus by the extension of the process alphabet by this variable, i.e. by the extension of the Isabelle/HOL record:

```isabelle
record α alpha = α alpha_rp + idS :: ID set
```

This introduces the record type `alpha` that contains the observational variables of a reactive process, plus the variable `idS`. Note that our *Circus* semantic representation allows “built-in” bindings of alphabets in a typed way. Moreover, there is no restriction on the associated HOL type. However, the inconvenience of this representation is that variables cannot be introduced “on the fly”; they must be known statically i.e. at type inference time. Another consequence is that a ”syntactic” operation such as variable renaming has to be expressed as a ”semantic” operation that maps one record type into another.

3.1.1 Updating and accessing global variables.

Since the alphabets are represented by HOL records, i.e. a kind binding ”name → value”, we need a certain infrastructure to access data in them and to update them. The Isabelle representation as records gives us already
two functions (for each record) “select” and “update”. The “select” function returns the value of a given variable name, and the “update” functions updates the value of this variable. Since we may have different HOL types for different variables, a unique definition for select and update cannot be provided. There is an instance of these functions for each variable in the record. The name of the variable is used to distinguish the different instances: for the select function the name is used directly and for the update function the name is used as a prefix e.g. for a variable named “x” the names of the select and update functions are respectively x of type α and x_update. Since a variable is characterized essentially by these functions, we define a general type (synonym) called var which represents a variable as a pair of its select and update function (in the underlying state σ).

types \((\beta, \sigma) \text{var} = "(\sigma \Rightarrow \beta) \times ((\beta \Rightarrow \beta) \Rightarrow \sigma \Rightarrow \sigma)"

For a given alphabet (record) of type \(\sigma\), \((\beta, \text{the type } \sigma)\text{var}\) represents the type of the variables whose value type is \(\beta\). One can then extract the select and update functions from a given variable with the following functions:
definition select :: "((\beta, \sigma) \text{var}) \Rightarrow \sigma \Rightarrow \beta"
where select f \equiv (fst f)
definition update :: "((\beta, \sigma) \text{var}) \Rightarrow \beta \Rightarrow \sigma \Rightarrow \sigma"
where update f v \equiv (snd f) (\lambda _ . v)

Finally, we introduce a function called VAR to implement a syntactic translation of a variable name to an entity of type var.
syntax "VAR" :: "id \Rightarrow ((\beta, \sigma) \text{var})" ("VAR _")
translations VAR x => (x, _update_name x)

Note that in this syntactic translation rule, _update_name x stands for the concatenation of the string _update_ with the content of the variable x; the resulting _update_x in this example is mapped to the field-update function of the extensible record x_update by a default mechanism. On this basis, the assignment notation can be written as usual:
syntax "_assign" :: "id \Rightarrow (\sigma \Rightarrow \beta) \Rightarrow (\alpha, \sigma) \text{action}" ("_ := _")
translations
"x := E" => "CONST ASSIGN (VAR x) E"

and mapped to the semantics of the program variable \((x, x_{update})\) together with the universal ASSIGN operator defined later on, in Section 3.3.2.

3.1.2 Updating and accessing local variables.

In Circus, local program variables can be introduced on the fly, and their scopes are explicitly defined, as can be seen in the FIG example. In textbook
Circus, nested scopes are handled by variable renaming which is not possible in our representation due to the implicit representation of variable names. We represent local program variables by global variables, using the `var` type defined above, where selection and update involve an explicit stack discipline. Each variable is mapped to a list of values, and not to one value only (as for state variables). Entering the scope of a variable is just adding a new value as the head of the corresponding values list. Leaving a variable scope is just removing the head of the values list. The select and update functions correspond to selecting and updating the head of the list. This ensures dynamic scoping, as it is stated by the *Circus* semantics.

Note that this encoding scheme requires to make local variables lexically distinct from global variables; local variable instances are just distinguished from the global ones by the stack discipline.

3.2 Synchronization infrastructure: Name sets and channels.

3.2.1 Name sets.

An important notion, used in the definition of parallel *Circus* actions, is name sets as seen in Section 2.3. A name set is a set of variable names, which is a subset of the alphabet. This notion cannot be directly expressed in our representation since variable names are not explicitly represented. Thus its definition relies on the characterization of the variables in our representation. As for variables, name sets are defined by their functional characterization. They are used in the definition of the binding merge function MSt below: $orall v @ (v \in ns1 \Rightarrow v' = (1,v)) \land (v \in ns2 \Rightarrow v' = (2,v)) \land (v \notin ns1 \cup ns2 \Rightarrow v' = v)$.

The disjoint name sets $ns1$ and $ns2$ are used to determine which variable values (extracted from local bindings of the parallel components) are used to update the global binding of the process. A name set can be functionally defined as a binding update function, that copies values from a local binding to the global one. For example, a name set NS that only contains the variable x can be defined as follows in Isabelle/Circus:

```
definition NS lb gb ≡ x_update (x lb) gb
```

where `lb` and `gb` stands for local and global bindings, `x` and `x_update` are the select and update functions of variable `x`. Then the merge function can be defined by composing the application of the name sets to the global binding.

3.2.2 Channels.

Reactive processes interact with the environment via synchronizations and communications. A synchronization is an interaction via a channel without any exchange of data. A communication is a synchronization with data exchange. In order to reason about communications in the same way, a
datatype `channels` is defined using the channels names as constructors. For instance, in:

```plaintext
datatype channels = chan1 | chan2 nat | chan3 bool
```

we declare three channels: `chan1` that synchronizes without data, `chan2` that communicates natural values and `chan3` that exchanges boolean values.

This definition makes it possible to reason globally about communications since they have the same type. However, the channels may not have the same type: in the example above, the types of `chan1`, `chan2` and `chan3` are respectively `channels`, `nat ⇒ channels` and `bool ⇒ channels`. In the definition of some Circus operators, we need to compare two channels, and one can’t compare for example `chan1` with `chan2` since they don’t have the same type. A solution would be to compare `chan1` with `(chan2 v)`. The types are equivalent in this case, but the problem remains because comparing `(chan2 0)` to `(chan2 1)` will state inequality just because the communicated values are not equal. We could define an inductive function over the datatype `channels` to compare channels, but this is only possible when all the channels are known a priori.

Thus, we add some constraint to the generic channels type: we require the `channels` type to implement a function `chan_eq` that tests the equality of two channels. Fortunately, Isabelle/HOL provides a construct for this kind of restriction: the type classes (sorts) mentioned in Section 2.1. We define a type class (interface) `chan_eq` that contains a signature of the `chan_eq` function.

```plaintext
class chan_eq =
  fixes chan_eq :: "α ⇒ α ⇒ bool"
begin end
```

Concrete channels type must implement the interface (class) “`chan_eq`” that can be easily defined for this concrete type. Moreover, one can use this class to add some definition that depends on the channel equivalence function. For example, a trace equivalence function can be defined as follows:

```plaintext
fun tr_eq where
  tr_eq [] [] = True | tr_eq xs [] = False | tr_eq [] ys = False
  | tr_eq (x#xs) (y#ys) = if chan_eq x y then tr_eq xs ys else False
```

It is applicable to traces of elements whose type belongs to the sort `chan_eq`.

3.3 Actions and Processes

The Circus actions type is defined as the set of all the CSP healthy reactive processes. The type `(α, σ)relation_rp` is the reactive process type where `α` is of `channels` type and `σ` is a record extensions of `action_rp`, i.e. the global state variables. On this basis, we can encode the concept of a process
for a family of possible state instances. We introduce below the vital type
\textbf{action}:

typedef (Action)
\begin{align*}
\alpha::\text{chan} _\text{eq}, \sigma & \rightarrow \text{action} = \{p::(\alpha, \sigma)\text{relation}_\text{rp}. \text{is}_\text{CSP}_\text{process} \ p\}
\end{align*}
proof - {...}
qed

As mentioned before, a type-definition introduces a new type by stating a
set. In our case it is the set of reactive processes that satisfy the healthiness-
conditions for CSP-processes, isomorphic to the new type.

Technically, this construct introduces two constants definitions \textit{Abs_Action}
and \textit{Rep_Action} respectively of type \((\alpha, \sigma)\text{relation}_\text{rp} \Rightarrow (\alpha, \sigma)\text{action}\)
and \((\alpha, \sigma)\text{action} \Rightarrow (\alpha, \sigma)\text{relation}_\text{rp}\) as well as the usual two axioms expressing
the bijection \textit{Abs_Action}(\textit{Rep_Action}(X))=X and \textit{is_CSP_process}
p \rightarrow \textit{Rep_Action}(\textit{Abs_Action}(p))=p where \textit{is_CSP_process}
captures the healthiness conditions.

Every \textit{Circus} action is an abstraction of an alphabetized predicate. In
[9], we introduce the definitions of all the actions and operators using their
denotational semantics. The environment contains, for each action, the
proof that this predicate is CSP healthy.

In this section, we present some of the important definitions, namely:
basic actions, assignments, communications, hiding, and recursion.

\textbf{3.3.1 Basic actions.}

\textbf{Stop} is defined as a reactive design, with a precondition \textbf{true} and a post-
condition stating that the system deadlocks and the traces are not evolving.

definition
\textbf{Stop} \equiv \textit{Abs_Action} (R (\textbf{true} \vdash \lambda (A, A'). \ tr \ A' = tr \ A \land \text{wait} \ A'))

\textbf{Skip} is defined as a reactive design, with a precondition \textbf{true} and a post-
condition stating that the system terminates and all the state variables
are not changed. We represent this fact by stating that the \textit{more} field (seen
in Section 2.2) is not changed, since this field is mapped to all the state
variables. Note that using the \textit{more}-field is a tribute to our encoding of
alphabets by extensible records and stands for all future extensions of the
alphabet (e.g. state variables).

definition \textbf{Skip} \equiv \textit{Abs_Action} (R (\textbf{true} \vdash \lambda (A, A'). \ tr \ A' = tr \ A
\land \neg \text{wait} \ A' \land \text{more} \ A = \text{more} \ A'))

\textbf{3.3.2 The universal assignment action.}

In Section 3.1.1, we described how global and local variables are represented
by access- and updates functions introduced by fields in extensible records.
In these terms, the "lifting" to the assignment action in Circus processes is straightforward:

definition

\[\text{ASSIGN}:: "(\beta, \sigma) \Rightarrow (\sigma \Rightarrow \beta) \Rightarrow (\alpha::ev_eq, \sigma) \Rightarrow \text{action}" \]

where

\[\text{ASSIGN} \ x \ e \equiv \text{Abs_Action} \ (R \ (\text{true} \ \vdash \ Y)) \]

where

\[Y = \lambda (A, A'). \ tr \ A' = tr \ A \land \neg \text{wait} \ A' \land \]
\[\text{more} \ A' = (\text{assign} \ x \ (e \ (\text{more} \ A))) \ (\text{more} \ A) \]

where **assign** is the projection into the update operation of a semantic variable described in section 3.1.1.

3.3.3 Communications.

The definition of prefixed actions is based on the definition of a special relation **do_I**. In the Circus denotational semantics [13], various forms of prefixing were defined. In our theory, we define one general form, and the other forms are defined as special cases.

definition \(\text{do}_I \ c \ x \ P \equiv \text{X} \land \text{wait} \circ \text{fst} \triangleright \ Y \)

where

\[X = (\lambda (A, A'). \ tr \ A = tr \ A' \land ((c \ P) \cap \text{ref} \ A') = \{\}) \]

and

\[Y = (\lambda (A, A'). \text{hd} ((\text{tr} \ A') - (\text{tr} \ A)) \in (c \ P) \land \]
\[(c \ (\text{select} \ x \ (\text{more} \ A))) = (\text{last} \ (\text{tr} \ A')) \]

where **c** is a channel constructor, **x** is a variable (of **var** type) and **P** is a predicate. The **do_I** relation gives the semantics of an interaction: if the system is ready to interact, the trace is unchanged and the waiting channel is not refused. After performing the interaction, the new event in the trace corresponds to this interaction.

The semantics of the whole action is given by the following definition:

definition \(\text{Prefix} \ c \ x \ P \ S \equiv \text{Abs_Action}(R \ (\text{true} \ \vdash \ Y)) \ ; \ S \)

where

\[Y = \text{do}_I \ c \ x \ P \land (\lambda (A, A'). \text{more} \ A' = \text{more} \ A) \]

where **c** is a channel constructor, **x** is a variable (of type **var**), **P** is a predicate and **S** is an action. This definition states that the prefixed action semantics is given by the interaction semantics (**do_I**) sequentially composed with the semantics of the continuation (action **S**).

Different types of communication are considered:

- **Inputs**: the communication is done over a variable.
- **Constrained Inputs**: the input variable value is constrained with a predicate.
• Outputs: the communications exchanges only one value.

• Synchronizations: only the channel name is considered (no data).

The semantics of these different forms of communications is based on
the general definition above.

definition read c x P ≡ Prefix c x true P
definition write1 c a P ≡ Prefix c (λs. a s, (λ x. λy. y)) true P
definition write0 c P ≡ Prefix (λ_.c) (λ_. , (λ x. λy. y)) true P

where read, write1 and write0 respectively correspond to inputs, outputs
and synchronization. Constrained inputs correspond to the general defini-
tion.

We configure the Isabelle syntax-engine such that it parses the usual
communication primitives and gives the corresponding semantics:

translations
c ? p →P == CONST read c (VAR p) P
c ? p : b →P == CONST Prefix c (VAR p) b P
c ! p →P == CONST write1 c p P
a → P == CONST write0 (TYPE(_)) a P

3.3.4 Hiding.

The hiding operator is interesting because it depends on a channel set. This
operator P \ cs is used to encapsulate the events that are in the channel
set cs. These events become no longer visible from the environment. The
semantics of the hiding operator is given by the following reactive process:

definition
Hide ::= "[(α, σ) action , α set] ⇒ (α, σ) action" (infixl "\")

where
P \ cs ≡ Abs_Action(R(λ (A, A').
 ∃ s. (Rep_Action P)(A, A'|(tr :=s, ref := (ref A') ∪ cs)
 ∧ (tr A' - tr A) = (tr_filter (s - tr A) cs))); Skip

The definition uses a filtering function tr_filter that removes from
a trace the events whose channels belong to a given set. The definition
of this function is based on the function chan_eq we defined in the class
chan_eq. This explains the presence of the constraint on the type of the
action channels in the hiding definition, and in the definition of the filtering
function below:

fun tr_filter::"a::chan_eq list ⇒a set ⇒a list" where
tr_filter [] cs = []
| tr_filter (x#xs) cs = (if (~ chan-in_set x cs)
 then (x#(tr_filter xs cs))
 else (tr_filter xs cs))

17
where the `chan-in_set` function checks if a given channel belongs to a channel set using `chan_eq` as equality function.

3.3.5 Recursion.

To represent the recursion operator “µ” over actions, we use the universal least fix-point operator “lfp” defined in the HOL library for lattices and we follow again [13]. The use of least fix-points in [13] is the most substantial deviation from the standard CSP denotational semantics, which requires Scott-domains and complete partial orderings. The operator `lfp` is inherited from the “Complete Lattice class” under some conditions, and all theorems defined over this operator can be reused. In order to reuse this operator, we have to show that the least-fixpoint over functionals that enrich pairs of failure - and divergence trace sets monotonely, produces an action that satisfies the CSP healthiness conditions. This consistency proof for the recursion operator is the largest contained in the Isabelle/Circus library.

Therefore, we must prove that the Circus actions type defines a complete lattice. This leads to prove that the actions type belongs to the HOL “Complete Lattice class”. Since type classes in HOL are hierarchic, the proof is in three steps: first, a proof that the Circus actions type forms a lattice by instantiating the HOL “Lattice class”; second, a proof that actions type instantiates a subclass of lattices called “Bounded Lattice class”; third, proof of the instantiation from the “Complete Lattice class”. More on these proofs can be found in [9].

3.3.6 Circus Processes.

A Circus process is defined in our environment as a local theory by introducing qualified names for all its components. This is very similar to the notion of namespaces popular in programming languages. Defining a Circus process locally makes it possible to encapsulate definitions of alphabet, channels, schema expressions and actions in the same namespace. It is important for the foundation of Isabelle/Circus to avoid the ambiguity between local process entities definitions (e.g. FIG.Out and DFIG.Out in the example of Section 4).

4 Using Isabelle/Circus

We describe the front-end interface of Isabelle/Circus. In order to support a maximum of common Circus syntactic look-and-feel, we have programmed at the SML level of Isabelle a compiler that parses and (partially) pretty prints Circus process given in the syntax presented in Figure 2.
4.1 Writing specifications

A specification is a sequence of paragraphs. Each paragraph may be a declaration of alphabet, state, channels, name sets, channel sets, schema expressions or actions. The main action is introduced by the keyword where. Below, we illustrate how to use the environment to write a Circus specification using the FIG process example presented in Figure 1.

```
circusprocess FIG =
    alphabet = [v::nat, x::nat]
    state = [idS::nat set]
    channel = [req, ret nat, out nat]
    schema Init = idS := {}
    schema Out = ∃a. v' = a ∧ v' ∉ idS ∧ idS' = idS ∪ {v'}
    schema Remove = x ∉ idS ∧ idS' = idS - {x}
where var v · Schema Init; (µ X · (req → Schema Out; out!v → Skip)
    □ (ret?x → Schema Remove); X)
```

Each line of the specification is translated into the corresponding semantic operator given in Section 3.3. We describe below the result of executing each command of FIG:

- the compiler introduces a scope of local components whose names are qualified by the process name (FIG in the example).

- alphabet generates a list of record fields to represent the binding. These fields map names to value lists.

- state generates a list of record fields that corresponds to the state variables. The names are mapped to single values. This command, together with alphabet command, generates a record that represents all the variables (for the FIG example the command generates the record FIG_alphabet, that contains the fields v and x of type nat list and the field idS of type nat set).

- channel introduces a datatype of typed communication channels (for the FIG example the command generates the datatype FIG_channels that contains the constructors req without communicated value and ret and out that communicate natural values).

- schema allows the definition of schema expressions represented as an alphabetized relation over the process variables (in the example the schema expressions FIG_Init, FIG_Out and FIG_Remove are generated).

- action introduces definitions for Circus actions in the process. These definitions are based on the denotational semantics of Circus actions.
The type parameters of the action type are instantiated with the locally defined channels and alphabet types.

- where introduces the main action as in action command (in the example the main action is FIG.FIG of type (FIG_channels, FIG_alphabet)action).

4.2 Relational and Functional Refinement in Circus

The main goal of Isabelle/Circus is to provide a proof environment for Circus processes. The “shallow-embedding” of Circus and UTP in Isabelle/HOL offers the possibility to reuse proof procedures, infrastructure and theorem libraries already existing in Isabelle/HOL. Moreover, once a process specification is encoded and parsed in Isabelle/Circus, proofs of, e.g., refinement properties can be developed using the ISAR language for structured proofs.

To show in more details how to use Isabelle/Circus, we provide a small example of action refinement proof. The refinement relation is defined as the universal reverse implication in the UTP. In Circus, it is defined as follows:

definition A1 ⊑c A2 ≡ (Rep_Action A1) ⊑utp (Rep_Action A2)

where A1 and A2 are Circus actions, ⊑c and ⊑utp stands respectively for refinement relation on Circus actions and on UTP predicate.

This definition assumes that the actions A1 and A2 share the same alphabet (binding) and the same channels. In general, refinement involves an important data evolution and growth. The data refinement is defined in [16, 5] by backwards and forwards simulations. In this paper, we restrict ourselves to a special case, the so-called functional backwards simulation. This refers to the fact that the abstraction relation R that relates concrete and abstract actions is just a function:

definition Simulation ("_ ⪯_ _") where
A1 ⪯R A2 = ∀ a b. (Rep_Action A2)(a, b) −→ (Rep_Action A1)(R a, R b)

where A1 and A2 are Circus actions and R is a function mapping the corresponding A1 alphabet to the A2 alphabet.

4.3 Refinement Proofs

We can use the definition of simulation to transform the proof of refinement to a simple proof of implication by unfolding the operators in terms of their underlying relational semantics. The problem with this approach is that the size of proofs will grow exponentially with the size of the processes. To avoid this problem, some general refinement laws were defined in [5] to deal with the refinement of Circus actions at operators level and not at UTP level. We introduced and proved a subset of these laws in our environment (see Table 1).
In Table 1, the relations \(x \sim_S y \) and \(g_1 \simeq_S g_2 \) record the fact that the variable \(x \) (respectively the guard \(g_1 \)) is refined by the variable \(y \) (respectively by the guard \(g_2 \)) w.r.t the simulation function \(S \).

These laws can be used in complex refinement proofs to simplify them at the Circus level. More rules can be defined and proved to deal with more complicated statements like combination of operators for example. Using these laws, and exploiting the advantages of a shallow embedding, the automated proof of refinement becomes surprisingly simple.

Coming back to our example, let us consider the DFIG specification below, where the management of the identifiers via the set \(\text{idS} \) is refined into a set of removed identifiers \(\text{retidS} \) and a number \(\text{max} \), which is the rank of the last issued identifier.

circusprocess DFIG =
alphabet = [w::nat, y::nat]
state = [retidS::nat set, max::nat]
schema Init = retidS' = {} \land max' = 0
schema Out = w' = max \land max' = max+1 \land \text{retidS}' = \text{retidS} - \{\text{max}\}
schema Remove = y < \text{max} \land y \notin \text{idS} \land \text{idS}' = \text{idS} \cup \{y\} \land max' = max

where var w \cdot \text{Schema Init}; (\mu X \cdot (\text{req} \rightarrow \text{Schema Out}; \text{out}!w \rightarrow \text{Skip})
 \square (\text{ret}?y \rightarrow \text{Schema Remove}); X)
We provide the proof of refinement of FIG by DFIG just instantiating the simulation function \(R \) by the following abstraction function, that maps the underlying concrete states to abstract states:

\[
definition \text{Sim } A = \text{FIG_alphabet.make } (w \ A) \ (y \ A) \\
\quad (\{ a. a < (\text{max } A) \land a \notin (\text{retidS } A)\})
\]

where \(A \) is the alphabet of DFIG, and \(\text{FIG_alphabet.make} \) yields an alphabet of type \(\text{FIG_Alphabet} \) initializing the values of \(v, x \) and \(\text{idS} \) by their corresponding values from \(\text{DFIG_alphabet}: w, y \) and \(\{ a. a < \text{max } A \land a \notin \text{retidS}\} \).

To prove that DFIG is a refinement of FIG one must prove that the main action DFIG.DFIG refines the main action FIG.FIG. The definition is then simplified, and the refinement laws are applied to simplify the proof goal. Thus, the full proof consists of a few lines in ISAR:

\[
\text{theorem } "\text{FIG.FIG } \preceq \text{Sim } \text{DFIG.DFIG}" \\
\quad \text{apply (auto simp: DFIG.DFIG_def FIG.FIG_def mono_Seq intro!: VarI SeqI MuI DetI SyncI InpI OutI SkipI)} \\
\quad \text{apply (simp_all add: SimInit SimOut SimRemove SimInit Sim_def)} \\
\text{done}
\]

First, the definitions of FIG.FIG and DFIG.DFIG are simplified and the defined refinement laws are used by the \texttt{auto} tactic as introduction rules. The second step replaces the definition of the simulation function and uses some proved lemmas to finish the proof. The three lemmas used in this proof: SimInit, SimOut and SimRemove give proofs of simulation for the schema Init, Out and Remove.

5 Conclusions

We have shown for the language Circus, which combines data-oriented modeling in the style of Z and behavioral modeling in the style of CSP, a semantics in form of a shallow embedding in Isabelle/HOL. In particular, by representing the somewhat non-standard concept of the alphabet in UTP in form of extensible records in HOL, we achieved a fairly compact, typed presentation of the language. In contrast to previous work based on some deep embedding [19], this shallow embedding allows arbitrary (higher-order) HOL-types for channels, events, and state-variables, such as, e.g., sets of relations etc. Besides, systematic renaming of local variables is avoided by compiling them essentially to global variables using a stack of variable instances. The necessary proofs for showing that the definitions are consistent — \textit{i.e.} satisfy altogether \texttt{is_CSP_healthy} — have been done, together with a number of algebraic simplification laws on Circus processes.

Since the encoding effort can be hidden behind the scene by flexible extension mechanisms of the Isabelle, it is possible to have a compact notation
for both specifications and proofs. Moreover, existing standard tactics of Isabelle such as auto, simp and metis can be reused since our Circus semantics is representationally close to HOL. Thus, we provide an environment that can cope with combined refinements concerning data and behavior. Finally, we demonstrate its power — w.r.t. both expressivity and proof automation — with a small, but prototypic example of a process-refinement.

In the future, we intend to use Isabelle/Circus for the generation of test-cases, on the basis of [4], using the HOL-TestGen-environment [2].

6 Acknowledgement

We warmly thank Markarius Wenzel for his valuable help with the Isabelle framework. Furthermore, we are greatly indebted to Ana Cavalcanti for her comments on the semantic foundation of this work.
7 Pre-declaration of user commands to workaround statefulness of outer syntax

theory Commands imports Main
keywords alphabet state channel nameset chanset schema action and circus-process :: thy-decl
begin

ML ⟨⟨
val circus-process-fn =
 Unsynchronized.ref (undefined: (string * string option) list * binding ->
 (binding * string) list ->
 (binding * string) list ->
 (string option * (binding * string option) list) ->
 (binding * string list) list ->
 (binding * bstring list) list ->
 (binding * (bool * string)) list -> string -> theory -> theory);

local
val fields =
 Parse.$$ [|-- Parse.enum1 , (Parse.binding -- (Parse.$$:: |-- Parse.!!! Parse.typ))
 --| Parse.$$];

val constrs =
 (Parse.$$ [|-- Parse.enum1 , (Parse.binding -- Scan.option Parse.typ) --| Parse.$$]) >> pair NONE
 || Parse.typ >> (fn b => (SOME b, []));

val names =
 Parse.$$ [|-- Parse.enum1 , Parse.name --| Parse.$$];

in

val - =
 Outer-Syntax.command @{command-spec circus-process} Circus process specification
 ((Parse.type-args-constrained -- Parse.binding -- Parse.$$ =) --
 Scan.optional (@{keyword alphabet} |-- Parse.!!! (Parse.$$ = |-- fields))
 [] --
 Scan.optional (@{keyword state} |-- Parse.!!! (Parse.$$ = |-- fields)) []
 --
 Scan.optional (@{keyword channel} |-- Parse.!!! (Parse.$$ = |-- constrs))
 (NONE. [] --
 Scan.repeat (@{keyword nameset} |-- Parse.!!! ((Parse.binding -- | Parse.$$ =) -- names)) --
 Scan.repeat (@{keyword chanset} |-- Parse.!!! ((Parse.binding -- | Parse.$$
UTP variables

theory Var
imports Commands

begin

UTP variables are characterized by two functions, select and update. The
variable type is then defined as a tuple (select * update).

type-synonym ('a, 'r) var = ('a => 'a) * ('a => 'r => 'r)

The lookup function returns the corresponding select function of a variable.
definition lookup :: ('a, 'r) var => 'r => 'a
 where lookup f ≡ (fst f)

The assign function uses the update function of a variable to update its
value.
definition assign :: ('a, 'r) var => 'a => 'r => 'r
 where assign f v ≡ (snd f) (λ -. v)

The VAR function allows to retrieve a variable given its name.
syntax -VAR :: id => ('a, 'r) var (VAR -)
translations VAR x =>> (x, -update-name x)

end

9 Predicates and relations

theory Relations
imports Var

begin

default-sort type

Unifying Theories of Programming (UTP) is a semantic framework based
on an alphabetized relational calculus. An alphabetized predicate is a pair
(alphabet, predicate) where the free variables appearing in the predicate are all in the alphabet.

An alphabetized relation is an alphabetized predicate where the alphabet is composed of input (undecorated) and output (dashed) variables. In this case the predicate describes a relation between input and output variables.

9.1 Definitions

In this section, the definitions of predicates, relations and standard operators are given.

type-synonym 'α alphabet = 'α

type-synonym 'α predicate = 'α alphabet ⇒ bool

definition true::'α predicate
where true ≡ λA. True

definition false::'α predicate
where false ≡ λA. False

definition not::'α predicate ⇒ 'α predicate (¬ [40] 40)
where ¬ P ≡ λA. ¬ (P A)

definition conj::'α predicate ⇒ 'α predicate ⇒ 'α predicate (infixr ∧ 35)
where P ∧ Q ≡ λA. P A ∧ Q A

definition disj::'α predicate ⇒ 'α predicate ⇒ 'α predicate (infixr ∨ 30)
where P ∨ Q ≡ λA. P A ∨ Q A

definition impl::'α predicate ⇒ 'α predicate ⇒ 'α predicate (infixr −→ 25)
where P −→ Q ≡ λA. P A −→ Q A

definition iff::'α predicate ⇒ 'α predicate ⇒ 'α predicate (infixr ←→ 25)
where P ←→ Q ≡ λA. P A ←→ Q A

definition ex::'β ⇒ 'α predicate] ⇒ 'α predicate (binder ∃ 10)
where ∃ x. P x ≡ λA. ∃ x. (P x) A

definition all::'β ⇒ 'α predicate] ⇒ 'α predicate (binder ∀ 10)
where ∀ x. P x ≡ λA. ∀ x. (P x) A

type-synonym 'α condition = ('α × 'α) ⇒ bool

type-synonym 'α relation = ('α × 'α) ⇒ bool

definition cond::'α relation ⇒ 'α condition ⇒ 'α relation ⇒ 'α relation ((3- < - > / -) [14,0,15] 14)
where (P ◦ b ▷ Q) ≡ (b ∧ P) ∨ (¬ b) ∧ Q)

26
definition \(\text{comp}::((\alpha \times \beta) \Rightarrow \text{bool}) \Rightarrow ((\beta \times \gamma) \Rightarrow \text{bool}) \Rightarrow (\alpha \times \gamma) \Rightarrow \text{bool}\)

where \(P \circ Q \equiv \lambda r. r : \{\{p. P p\} \mid q. Q q\}\)

definition \(\text{Assign}::(\alpha, \beta) \Rightarrow \alpha \Rightarrow \beta \Rightarrow (\alpha \times \beta) \Rightarrow \text{bool}\)

where \(\text{Assign } x a \equiv \lambda (A, A') \cdot A' = (\text{assign } x a) A\)

syntax
 -assignment :: id \Rightarrow \alpha \Rightarrow \beta \Rightarrow (\cdot ::= \cdot)

translations
 \(y ::= \text{vv} \Rightarrow \text{CONST Assign (VAR y vv)}\)

abbreviation (input) \text{closure}::\alpha \Rightarrow \beta \Rightarrow \text{bool} ([\cdot])

where \([P] \equiv \forall A. P A\)

abbreviation (input) \text{ndet}::\alpha \Rightarrow \beta \Rightarrow \text{bool} ((\cdot \sqcap \cdot))

where \(P \sqcap Q \equiv P \land Q\)

abbreviation (input) \text{join}::\alpha \Rightarrow \beta \Rightarrow \text{bool} ((\cdot \sqcup \cdot))

where \(P \sqcup Q \equiv P \lor Q\)

abbreviation (input) \text{ndetS}::\alpha \Rightarrow \beta \Rightarrow \text{bool} ([\cdot])

where \(\sqcap S \equiv \lambda A. A \in \bigcup\{\{p. P p\} \mid P. P \in S\}\)

abbreviation (input) \text{conjS}::\alpha \Rightarrow \beta \Rightarrow \text{bool} ([\cdot])

where \(\sqcup S \equiv \lambda A. A \in \bigcap\{\{p. P p\} \mid P. P \in S\}\)

abbreviation (input) \text{skip-r}::\alpha \Rightarrow \beta \Rightarrow \text{bool} (\Pi r)

where \(\Pi r \equiv \lambda (A, A') \cdot A = A'\)

abbreviation (input) \text{Bot}::\alpha \Rightarrow \beta \Rightarrow \text{bool}

where \(\text{Bot} \equiv \text{true}\)

abbreviation (input) \text{Top}::\alpha \Rightarrow \beta \Rightarrow \text{bool}

where \(\text{Top} \equiv \text{false}\)

lemmas utp-defs = true-def false-def conj-def disj-def not-def impl-def iff-def

ex-def all-def cond-def comp-def Assign-def

9.2 Proofs

All useful proved lemmas over predicates and relations are presented here. First, we introduce the most important lemmas that will be used by automatic tools to simplify proofs. In the second part, other lemmas are proved using these basic ones.
9.2.1 Setup of automated tools

lemma true-intro: true \(x\) by (simp add: utp-defs)

lemma false-elim: false \(x\) \(\Rightarrow\) \(\neg\) \(C\) by (simp add: utp-defs)

lemma true-elim: true \(x\) \(\Rightarrow\) \(\neg\) \(C\) by (simp add: utp-defs)

lemma not-intro: \((P \Rightarrow false \ x)\) \(\Rightarrow\) \((\neg) \ x\) by (auto simp add: utp-defs)
lemma not-elim: \((\neg) \ x\) \(\Rightarrow\) \(P \ x\) \(\Rightarrow\) \(C\) by (auto simp add: utp-defs)
lemma not-dest: \((\neg) \ x\) \(\Rightarrow\) \(\neg\) \(P \ x\) by (auto simp add: utp-defs)

lemma conj-intro: \(P \ x\) \(\Rightarrow\) \(Q \ x\) \(\Rightarrow\) \((P \land Q) \ x\) by (auto simp add: utp-defs)
lemma conj-elim: \((P \land Q) \ x\) \(\Rightarrow\) \((P \ x\Rightarrow Q \ x\Rightarrow C)\) \(\Rightarrow\) \(C\) by (auto simp add: utp-defs)

lemma disj-introC: \((\neg) \ x \Rightarrow P \ x\) \(\Rightarrow\) \((P \lor Q) \ x\) by (auto simp add: utp-defs)
lemma disj-elim: \((P \lor Q) \ x\) \(\Rightarrow\) \((P \ x\Rightarrow C) \Rightarrow\) \((Q \ x\Rightarrow C) \Rightarrow\) \(C\) by (auto simp add: utp-defs)

lemma impl-intro: \((P \Rightarrow Q) \ x\) \(\Rightarrow\) \((P \Rightarrow Q) \ x\) by (auto simp add: utp-defs)
lemma impl-elimC: \((P \Rightarrow Q) \ x\) \(\Rightarrow\) \((\neg) \ x \Rightarrow R\) \(\Rightarrow\) \((Q \ x\Rightarrow R) \Rightarrow R\) by (auto simp add: utp-defs)

lemma iff-intro: \((P \Rightarrow Q) \ x\) \(\Rightarrow\) \((Q \Rightarrow P) \ x\) \(\Rightarrow\) \((P \Leftrightarrow Q) \ x\) by (auto simp add: utp-defs)
lemma iff-elimC: \((P \Leftrightarrow Q) \ x\) \(\Rightarrow\) \((P \Rightarrow Q) \ x\Rightarrow R\) \(\Rightarrow\) \((\neg) \ x \Rightarrow Q \ x\Rightarrow R\) \(\Rightarrow\) \(R\) by (auto simp add: utp-defs)

lemma all-intro: \((\forall) \ a. \ P \ a \ x\) \(\Rightarrow\) \((\forall) \ a. \ P \ a\) \(\Rightarrow\) \((\forall) \ a. \ P \ a \ x\) \(\Rightarrow\) \((\forall) \ a. \ P \ a \ x\Rightarrow R\) \(\Rightarrow\) \((\forall) \ a. \ P \ a \ x\Rightarrow Q \ x\Rightarrow R\) \(\Rightarrow\) \(R\) by (auto simp add: utp-defs)
lemma all-elim: \((\forall) \ a. \ P \ a\) \(\Rightarrow\) \((\forall) \ a. \ P \ a \ x\Rightarrow R\) \(\Rightarrow\) \(R\) by (auto simp add: utp-defs)

lemma ex-intro: \((\exists) \ a. \ P \ a \ x\) \(\Rightarrow\) \((\exists) \ a. \ P \ a\) \(\Rightarrow\) \((\exists) \ a. \ P \ a \ x\Rightarrow Q\) \(\Rightarrow\) \(Q\) by (auto simp add: utp-defs)
lemma ex-elim: \((\exists) \ a. \ P \ a\) \(\Rightarrow\) \((\exists) \ a. \ P \ a \ x\Rightarrow Q\) \(\Rightarrow\) \(Q\) by (auto simp add: utp-defs)

lemma comp-intro: \((P \ a, b) \Rightarrow Q \ (b, c) \Rightarrow (P ; ; Q) \ (a, c)\) by (auto simp add: comp-def)
lemma comp-elim: \((P ; ; Q) \ ac \Rightarrow (\forall) \ a. \ b. \ c. \ ac = (a, c) \Rightarrow P \ (a, b) \Rightarrow Q \ (b, c) \Rightarrow C\) \(\Rightarrow\) \(C\) by (auto simp add: comp-def)

declare not-def [simp]
declare iff-intro [intro!]
and not-intro [intro!]
and impl-intro [intro!]
and disj-introC [intro!]
and conj-intro [intro!]
and true-intro [intro!]
and comp-intro [intro]

declare not-dest [dest!]
and iff-elimC [elim!]
and false-elim [elim!]
and impl-elimC [elim!]
and disj-elim [elim!]
and conj-elim [elim!]
and comp-elim [elim!]
and true-elim [elim!]

declare all-intro [intro!] and ex-intro [intro]
declare ex-elim [elim!] and all-elim [elim]

lemmas relation-rules = iff-intro not-intro impl-intro disj-introC conj-intro true-intro
comp-intro not-dest iff-elimC false-elim impl-elimC all-elim
disj-elim conj-elim comp-elim all-intro ex-intro ex-elim

lemma split-cond:
A (((P \triangleleft b \triangleright Q) x) = ((b x \rightarrow A (P x)) \land (\neg b x \rightarrow A (Q x))))
by (cases b x) (auto simp add: utp-defs)

lemma split-cond-asm:
A (((P \triangleleft b \triangleright Q) x) = (\neg((b x \land \neg A (P x))) \lor (\neg b x \land \neg A (Q x))))
by (cases b x) (auto simp add: utp-defs)

lemmas cond-splits = split-cond split-cond-asm

9.2.2 Misc lemmas

lemma cond-idem:(P \triangleleft b \triangleright P) = P
by (rule ext) (auto split: cond-splits)

lemma cond-symm:(P \triangleleft b \triangleright Q) = (Q \triangleleft \neg b \triangleright P)
by (rule ext) (auto split: cond-splits)

lemma cond-assoc: ((P \triangleleft b \triangleright Q) \triangleleft c \triangleright R) = (P \triangleleft b \land c \triangleright (Q \triangleleft c \triangleright R))
by (rule ext) (auto split: cond-splits)

lemma cond-distr: (P \triangleleft b \triangleright (Q \triangleleft c \triangleright R)) = ((P \triangleleft b \triangleright Q) \triangleleft c \triangleright (P \triangleleft b \triangleright R))
by (rule ext) (auto split: cond-splits)

lemma cond-unit-T:(P \triangleleft true \triangleright Q) = P
by (rule ext) (auto split: cond-splits)

lemma cond-unit-F:(P \triangleleft false \triangleright Q) = Q
lemma cond-L6: \((P \triangleleft b \triangleright (Q \triangleleft b \triangleright R)) = (P \triangleleft b \triangleright R) \)
by (rule ext) (auto split: cond-splits)

lemma cond-L7: \((P \triangleleft b \triangleright (P \triangleleft c \triangleright Q)) = (P \triangleleft b \triangleright c \triangleright Q) \)
by (rule ext) (auto split: cond-splits)

lemma cond-and-distr: \(((P \land Q) \triangleleft b \triangleright (R \land S)) = ((P \triangleleft b \triangleright R) \land (Q \triangleleft b \triangleright S)) \)
by (rule ext) (auto split: cond-splits)

lemma cond-or-distr: \(((P \lor Q) \triangleleft b \triangleright (R \lor S)) = ((P \triangleleft b \triangleright R) \lor (Q \triangleleft b \triangleright S)) \)
by (rule ext) (auto split: cond-splits)

lemma cond-imp-distr: \(((P \rightarrow Q) \triangleleft b \triangleright (R \rightarrow S)) = ((P \triangleleft b \triangleright R) \rightarrow (Q \triangleleft b \triangleright S)) \)
by (rule ext) (auto split: cond-splits)

lemma cond-eq-distr: \(((P \leftrightarrow Q) \triangleleft b \triangleright (R \leftrightarrow S)) = ((P \triangleleft b \triangleright R) \leftrightarrow (Q \triangleleft b \triangleright S)) \)
by (rule ext) (auto split: cond-splits)

lemma comp-assoc: \((P ; ; (Q ; ; R)) = ((P ; ; Q) ; ; R) \)
by (rule ext) blast

lemma conj-comp: \((\bigwedge a b c. P (a, b) = P (a, c)) \implies (P \land (Q ; ; R)) = ((P \land Q) ; ; R) \)
by (rule ext) blast

lemma comp-cond-left-distr: \((\bigwedge x y z. b (x, y) = b (x, z)) \)
assumes \((P \triangleleft b \triangleright Q) ; ; R) = ((P ; ; R) \triangleleft b \triangleright (Q ; ; R)) \)
shows \((P \triangleleft b \triangleright (Q \land R)) ; ; R) = ((P \land Q) \triangleleft b \triangleright (Q \land R)) \)
using assms by (auto simp: fun-eq-iff utp-defs)

lemma ndet-symm: \((P \triangleleft a \triangleright \text{'a relation}) \cap Q = Q \cap P \)
by (rule ext) blast

lemma ndet-assoc: \(P \cap (Q \cap R) = (P \cap Q) \cap R \)
by (rule ext) blast

lemma ndet-idemp: \(P \cap P = P \)
by (rule ext) blast

lemma ndet-distr: \(P \cap (Q \cap R) = (P \cap Q) \cap (P \cap R) \)
by (rule ext) blast

lemma cond-ndet-distr: \((P \triangleleft b \triangleright (Q \cap R)) = ((P \triangleleft b \triangleright Q) \cap (P \triangleleft b \triangleright R)) \)
by (rule ext) (auto split: cond-splits)
lemma ndet-cond-distr: \((P \cap (Q \triangleleft b \triangleright R)) = ((P \cap Q) \triangleleft b \triangleright (P \cap R))\)
by (rule ext) (auto split: cond-splits)

lemma comp-ndet-l-distr: \(((P \cap Q) ; ; R) = ((P ; ; R) \cap (Q ; ; R))\)
by (auto simp: fun-eq-iff utp-defs)

lemma comp-ndet-r-distr: \((P ; ; (Q \cap R)) = ((P ; ; Q) \cap (P ; ; R))\)
by (auto simp: fun-eq-iff utp-defs)

lemma l2-5-1-A: \(\forall X \in S. [X \rightarrow (\prod S)]\)
by blast

lemma l2-5-1-B: \(((\forall X \in S. [X \rightarrow P]) \rightarrow ((\prod S) \rightarrow P))\)
by blast

lemma l2-5-1: \([(\prod S) \rightarrow P] \leftrightarrow (\forall X \in S. [X \rightarrow P])\)
by blast

lemma empty-disj: \(\prod \{\} = \text{Top}\)
by (rule ext) blast

lemma l2-5-1-2: \([P \rightarrow (\bigcup S)] \leftrightarrow (\forall X \in S. [P \rightarrow X])\)
by blast

lemma empty-conj: \(\bigcup \{\} = \text{Bot}\)
by (rule ext) blast

lemma l2-5-2: \(((\bigcup S) \cap Q) = (\bigcup \{P \cap Q \mid P \in S\})\)
by (rule ext) blast

lemma l2-5-3: \(((\prod S) \sqcup Q) = (\prod \{P \sqcup Q \mid P \in S\})\)
by (rule ext) blast

lemma l2-5-4: \(((\prod S) ; ; Q) = (\prod \{P ; ; Q \mid P \in S\})\)
by (rule ext) blast

lemma l2-5-5: \((Q ; ; (\prod S)) = (\prod \{Q ; ; P \mid P \in S\})\)
by (rule ext) blast

lemma all-idem :\(\forall b. \forall a. P a) = (\forall a. P a)\)
by (simp add: all-def)

lemma comp-unit-R [simp]: \((P ; ; \Pi r) = P\)
by (auto simp: fun-eq-iff utp-defs)

lemma comp-unit-L [simp]: \((\Pi r ; ; P) = P\)
by (auto simp: fun-eq-iff utp-defs)

lemmas comp-unit-simps = comp-unit-R comp-unit-L
lemma not-cond: \((- (P \triangleleft b \triangleright Q)) = ((\neg P) \triangleleft b \triangleright (\neg Q))\)
by (rule ext) (auto split: cond-splits)

lemma cond-conj-not-distr:
\(((P \triangleleft b \triangleright Q) \land \neg (R \triangleleft b \triangleright S)) = ((P \land \neg R) \triangleleft b \triangleright (Q \land \neg S))\)
by (rule ext) (auto split: cond-splits)

lemma imp-cond-distr:
\((R \rightarrow (P \triangleleft b \triangleright Q)) = ((R \rightarrow P) \triangleleft b \triangleright (R \rightarrow Q))\)
by (rule ext) (auto split: cond-splits)

lemma cond-imp-dist:
\(((P \triangleleft b \triangleright Q) \rightarrow R) = ((P \rightarrow R) \triangleleft b \triangleright (Q \rightarrow R))\)
by (rule ext) (auto split: cond-splits)

lemma cond-conj-distr:
\(((P \triangleleft b \triangleright Q) \land R) = ((P \land R) \triangleleft b \triangleright (Q \land R))\)
by (rule ext) (auto split: cond-splits)

lemma cond-disj-distr:
\(((P \triangleleft b \triangleright Q) \lor R) = ((P \lor R) \triangleleft b \triangleright (Q \lor R))\)
by (rule ext) (auto split: cond-splits)

lemma cond-know-b:
\((b \land (P \triangleleft b \triangleright Q)) = (b \land P)\)
by (rule ext) (auto split: cond-splits)

lemma cond-know-nb:
\(((\neg (b)) \land (P \triangleleft b \triangleright Q)) = ((\neg (b)) \land Q)\)
by (rule ext) (auto split: cond-splits)

lemma cond-ass-if:
\((P \triangleleft b \triangleright Q) = (((b) \land P) \triangleleft b \triangleright ((b) \land Q))\)
by (rule ext) (auto split: cond-splits)

lemma cond-ass-else:
\((P \triangleleft b \triangleright Q) = (P \triangleleft b \triangleright ((\neg b) \land Q))\)
by (rule ext) (auto split: cond-splits)

lemma not-true-eq-false:
\((\neg true) = false\)
by (rule ext) blast

lemma not-false-eq-true:
\((\neg false) = true\)
by (rule ext) blast

lemma conj-idem:
\(((P::'a predicate) \land P) = P\)
by (rule ext) blast

lemma disj-idem:
\(((P::'a predicate) \lor P) = P\)
by (rule ext) blast

lemma conj-comm:
\(((P::'a predicate) \land Q) = (Q \land P)\)
by (rule ext) blast

lemma disj-comm:
\(((P::'a predicate) \lor Q) = (Q \lor P)\)
by (rule ext) blast
lemma conj-subst: $P = R \Rightarrow ((P::\alpha \ predicate) \land Q) = (R \land Q)$
by (rule ext) blast

lemma disj-subst: $P = R \Rightarrow ((P::\alpha \ predicate) \lor Q) = (R \lor Q)$
by (rule ext) blast

lemma conj-assoc:((P::\alpha \ predicate) \land Q) \land S) = (P \land (Q \land S))
by (rule ext) blast

lemma disj-assoc:((P::\alpha \ predicate) \lor Q) \lor S) = (P \lor (Q \lor S))
by (rule ext) blast

lemma conj-disj-abs:((P::\alpha \ predicate) \land (P \lor Q)) = P
by (rule ext) blast

lemma disj-conj-abs:((P::\alpha \ predicate) \lor (P \land Q)) = P
by (rule ext) blast

lemma conj-disj-distr:((P::\alpha \ predicate) \land (Q \lor R)) = ((P \land Q) \lor (P \land R))
by (rule ext) blast

lemma disj-conj-dsitr:((P::\alpha \ predicate) \lor (Q \land R)) = ((P \lor Q) \land (P \lor R))
by (rule ext) blast

lemma true-conj-id:(P \land true) = P
by (rule ext) blast

lemma true-dsij-zero:(P \lor true) = true
by (rule ext) blast

lemma true-conj-zero:(P \land false) = false
by (rule ext) blast

lemma true-dsij-id:(P \lor false) = P
by (rule ext) blast

lemma imp-vacuous: (false \rightarrow u) = true
by (rule ext) blast

lemma p-and-not-p: (P \land \lnot P) = false
by (rule ext) blast

lemma conj-disj-not-abs: ((P::\alpha \ predicate) \land \lnot (P \lor Q)) = (P \land Q)
by (rule ext) blast

lemma p-or-not-p: (P \lor \lnot P) = true
by (rule ext) blast
lemma double-negation: $(\neg \neg (P::\alpha \text{ predicate})) = P$
 by (rule ext) blast

lemma not-conj-deMorgans: $(\neg ((P::\alpha \text{ predicate}) \land Q)) = ((\neg P) \lor (\neg Q))$
 by (rule ext) blast

lemma not-disj-deMorgans: $(\neg ((P::\alpha \text{ predicate}) \lor Q)) = ((\neg P) \land (\neg Q))$
 by (rule ext) blast

lemma p-imp-p: $(P \rightarrow P) = true$
 by (rule ext) blast

lemma imp-imp: $((P::\alpha \text{ predicate}) \rightarrow (Q \rightarrow R)) = ((P \land Q) \rightarrow R)$
 by (rule ext) blast

lemma imp-trans: $((P \rightarrow Q) \land (Q \rightarrow R) \rightarrow P \rightarrow R) = true$
 by (rule ext) blast

lemma p-equiv-p: $(P \iff P) = true$
 by (rule ext) blast

lemma equiv-eq: $(((P::\alpha \text{ predicate}) \land Q) \lor (\neg P \land \neg Q)) = \iff (P = Q)$
 by (auto simp add: fun-eq-iff utp-defs)

lemma equiv-eq1: $((P::\alpha \text{ predicate}) \iff Q) = \iff (P = Q)$
 by (auto simp add: fun-eq-iff utp-defs)

lemma cond-subst: $b = c \implies (P \triangleleft b \triangleright Q) = (P \triangleleft c \triangleright Q)$
 by simp

lemma ex-disj-distr: $(\exists x. P x) \lor (\exists x. Q x)) = (\exists x. (P x \lor Q x))$
 by (rule ext) blast

lemma all-disj-distr: $(\forall x. P x) \lor (\forall x. Q x)) = (\forall x. (P x \lor Q x))$
 by (rule ext) blast

lemma all-conj-distr: $(\forall x. P x) \land (\forall x. Q x)) = (\forall x. (P x \land Q x))$
 by (rule ext) blast

lemma all-triv: $(\forall x. P) = P$
 by (rule ext) blast

lemma closure-true: $[true]$
 by blast

lemma closure-p-eq-true: $[P] \iff (P = \text{true})$
 by (simp add: fun-eq-iff utp-defs)

lemma closure-equiv-eq: $[P \iff Q] \iff (P = Q)$

by (simp add: fun-eq-iff utp-defs)

lemma closure-conj-distr: \([P] \land [Q]\) = \([P \land Q]\)
 by blast

lemma closure-imp-distr: \([P \Rightarrow Q]\) \Rightarrow \([P] \Rightarrow [Q]\)
 by blast

lemma true-iff[simp]: (P \iff true) = P
 by blast

lemma true-imp[simp]: (true \Rightarrow P) = P
 by blast

end

10 Designs

theory Designs
imports Relations
begin

In UTP, in order to explicitly record the termination of a program, a subset of alphabetized relations is introduced. These relations are called designs and their alphabet should contain the special boolean observational variable ok. It is used to record the start and termination of a program.

10.1 Definitions

In the following, the definitions of designs alphabets, designs and healthiness (well-formedness) conditions are given. The healthiness conditions of designs are defined by \(H_1, H_2, H_3\) and \(H_4\).

record alpha-d = ok::bool

type-synonym \(\alpha\) alphabet-d = \(\alpha\) alpha-d-scheme alphabet

type-synonym \(\alpha\) relation-d = \(\alpha\) alphabet-d relation

definition design::\(\alpha\) relation-d \Rightarrow \(\alpha\) relation-d \Rightarrow \(\alpha\) relation-d (\(\langle - \vdash - \rangle\)) where \((P \vdash Q) \equiv \lambda (A, A') . \ (ok A \land P \ (A,A')) \Rightarrow (ok A' \land Q \ (A,A'))\)

definition skip-d :: \(\alpha\) relation-d (\(\Pi d\)) where \(\Pi d \equiv (true \vdash \Pi r)\)

definition J where \(J \equiv \lambda (A, A') . \ (ok A \Rightarrow ok A') \land more \ A = more \ A'\)

type-synonym \(\alpha\) Healthiness-condition = \(\alpha\) relation \Rightarrow \(\alpha\) relation
definition

Healthy::α relation ⇒ 'α Healthiness-condition ⇒ bool (- is - healthy)

where P is H healthy ≡ (P = H P)

lemma Healthy-def: P is H healthy = (H P = P)

unfolding Healthy-def by auto

definition H1::('α alphabet-d) Healthiness-condition

where H1 (P) ≡ (ok o fst →→ P)

definition H2::('α alphabet-d) Healthiness-condition

where H2 (P) ≡ P ; J

definition H3::('α alphabet-d) Healthiness-condition

where H3 (P) ≡ P ; Πd

definition H4::('α alphabet-d) Healthiness-condition

where H4 (P) ≡ ((P ; true) ←→ true)

definition σf::'α relation-d ⇒ 'α relation-d

where σf D ≡ λ(A, A′). D (A, A′(|ok:=False|))

definition σt::'α relation-d ⇒ 'α relation-d

where σt D ≡ λ(A, A′). D (A, A′(|ok:=True|))

definition OKAY::'α relation-d

where OKAY ≡ λ(A, A′). ok A

definition OKAY′::'α relation-d

where OKAY′ ≡ λ(A, A′). ok A′

lemmas design-defs = design-def skip-d-def J-def Healthy-def H1-def H2-def H3-def H4-def σf-def σt-def OKAY-def OKAY′-def

10.2 Proofs

Proof of theorems and properties of designs and their healthiness conditions are given in the following.

lemma t-comp-lz-d: (true ; (P ⊢ Q)) = true

apply (auto simp: fun-eq-iff design-defs)

apply (rule-tac b = b(|ok:=False|) in comp-intro, auto)

done

lemma pi-comp-left-unit: (Πd ; (P ⊢ Q)) = (P ⊢ Q)

by (auto simp: fun-eq-iff design-defs)

theorem t3-1-4-2:

((P1 ⊢ Q1) ⊲ b ⊳ (P2 ⊢ Q2)) = ((P1 ⊲ b ⊳ P2) ⊢ (Q1 ⊲ b ⊳ Q2))
lemma conv-conj-distr: \(\sigma t (P \land Q) = (\sigma t P \land \sigma t Q) \)
by (auto simp: design-defs fun-eq-iff split: cond-splits)

lemma conv-disj-distr: \(\sigma t (P \lor Q) = (\sigma t P \lor \sigma t Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma conv-imp-distr: \(\sigma t (P \rightarrow Q) = ((\sigma t P) \rightarrow \sigma t Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma conv-not-distr: \(\sigma t (\neg P) = (\neg(\sigma t P)) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-conj-distr: \(\sigma f (P \land Q) = (\sigma f P \land \sigma f Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-disj-distr: \(\sigma f (P \lor Q) = (\sigma f P \lor \sigma f Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-imp-distr: \(\sigma f (P \rightarrow Q) = ((\sigma f P) \rightarrow \sigma f Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-not-distr: \(\sigma f (\neg P) = (\neg(\sigma f P)) \)
by (auto simp: design-defs fun-eq-iff)

lemma ok-conv: \(\sigma t OKAY = OKAY \)
by (auto simp: design-defs fun-eq-iff)

lemma ok-div: \(\sigma f OKAY = OKAY \)
by (auto simp: design-defs fun-eq-iff)

lemma ok′-conv: \(\sigma t OKAY' = true \)
by (auto simp: design-defs fun-eq-iff)

lemma ok′-div: \(\sigma f OKAY' = false \)
by (auto simp: design-defs fun-eq-iff)

lemma H2-J-1:
assumes A: \(P \) is H2 healthy
shows \([(\lambda (A, A'). (P(A, A'[\text{ok := False}])) \rightarrow P(A, A'[\text{ok := True}])))] \)
using A by (auto simp: design-defs fun-eq-iff)

lemma H2-J-2-a: \(P (a,b) \rightarrow (P ;; J) (a,b) \)
unfolding J-def by auto

lemma ok-or-not-ok : \[P(a,b[\text{ok := True}]); P(a,b[\text{ok := False}])\] \(\rightarrow P(a, b) \)
apply (case-tac ok b)
apply (subgoal-tac b[ok := True] = b)
apply (simp-all)
apply (subgoal-tac b(ok:=False) = b)
apply (simp-all)
done

lemma H2-J-2-b:
assumes A: \(\lambda (A, A'). (P(A, A'\{ok := False\}) \rightarrow P(A, A'\{ok := True\}))\]
and B: \((P ; ; J) (a,b)\)
shows P (a,b)
using B
apply (auto simp: design-defs fun-eq-iff)
apply (case-tac ok b)
apply (subgoal-tac b = ba\{ok:=True\}, auto intro!: A[simplified, rule-format])
apply (rule-tac s=ba and t=ba\{ok:=False\} in subst, simp-all)
apply (subgoal-tac b = ba, simp-all)
apply (case-tac ok ba)
apply (subgoal-tac b = ba, simp-all)
apply (subgoal-tac b = ba\{ok:=False\}, auto intro!: A[simplified, rule-format])
apply (rule-tac s=ba and t=ba\{ok:=False\} in subst, simp-all)
done

lemma H2-J-2:
assumes A: \(\lambda (A, A'). (P(A, A'\{ok := False\}) \rightarrow P(A, A'\{ok := True\}))\]
shows P is H2 healthy
using H2-J-1 H2-J-2 by blast

lemma design-eq1: \(P \vdash Q) = (P \vdash P \land Q)\)
by (rule ext) (auto simp: design-defs)

lemma H1-idem: H1 o H1 = H1
by (auto simp: design-defs fun-eq-iff)

lemma H1-idem2: \((H1 (H1 P)) = (H1 P)\)
by (simp add: H1-idem[simplified fun-eq-iff Fun.comp-def, rule-format] fun-eq-iff)

lemma H2-idem: H2 o H2 = H2
by (auto simp: design-defs fun-eq-iff)

lemma H2-idem2: \((H2 (H2 P)) = (H2 P)\)
by (simp add: H2-idem[simplified fun-eq-iff Fun.comp-def, rule-format] fun-eq-iff)
lemma H1-H2-commute: \(H1 \circ H2 = H2 \circ H1 \)
by (auto simp: design-defs fun-eq-iff split: cond-splits)

lemma H1-H2-commute2: \(H1 \ (H2 \ P) = H2 \ (H1 \ P) \)

lemma alpha-d-eqD: \(r = r' \Longrightarrow ok \ r = ok \ r' \land alpha-d.more \ r = alpha-d.more \ r' \)
by (auto simp: alpha-d.equality)

lemma design-H1: \(P \vdash Q \) is H1 healthy
by (auto simp: design-defs fun-eq-iff)

lemma design-H2:
\((\forall a \ b. \ P \ (a, \ b\{ok := True\}) \longrightarrow P \ (a, \ b\{ok := False\})) \Longrightarrow (P \vdash Q) \) is H2 healthy
by (rule H2-J-2) (auto simp: design-defs fun-eq-iff)

end

11 Reactive processes

theory Reactive-Processes
imports Designs ∼/src/HOL/Library/Sublist

begin

Following the way of UTP to describe reactive processes, more observational variables are needed to record the interaction with the environment. Three observational variables are defined for this subset of relations: \(wait \), \(tr \) and \(ref \). The boolean variable \(wait \) records if the process is waiting for an interaction or has terminated. \(tr \) records the list (trace) of interactions the process has performed so far. The variable \(ref \) contains the set of interactions (events) the process may refuse to perform.

In this section, we introduce first some preliminary notions, useful for trace manipulations. The definitions of reactive process alphabets and healthiness conditions are also given. Finally, proved lemmas and theorems are listed.

11.1 Preliminaries

type-synonym \('a \ trace = 'a \ list \)

fun list-diff:\('a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list \ option\)
where
\(\text{list-diff} \ [] \ [] = \text{Some} \ l \)
\(\text{list-diff} \ [] \ [l] = \text{None} \)
\(\text{list-diff} \ [x#xs] \ [y#ys] = (\text{if} \ (x = y) \ \text{then} \ (\text{list-diff} \ xs \ ys) \ \text{else} \ \text{None}) \)
instantiation list :: (type) minus
begin
definition list-minus : \(l_1 - l_2 \equiv \text{the} (\text{list-diff} l_1 l_2) \)
instance ..
end

lemma list-diff-empty [simp]: the (list-diff l []) = l
by (cases l) auto

lemma prefix-diff-empty [simp]: l - [] = l
by (induct l) (auto simp: list-minus)

lemma prefix-diff-eq [simp]: l - l = []
by (induct l) (auto simp: list-minus)

lemma prefix-diff1 [simp]: (l @ t) - l = t
by (induct l) (auto simp: list-minus)

lemma prefix-subst1 [simp]: m = l @ t \(\Rightarrow \) m - l = t
by (auto)

lemma prefix-diff2 [simp]: (l @ (m @ t)) - (l @ m) = t
apply (simp only: append-assoc [symmetric])
apply (rule prefix-diff1)
done

lemma prefix-diff3 [simp]: (l @ m) - (l @ t) = (m - t)
by (induct l, auto simp: list-minus)

lemma prefix-diff4 [simp]: (a # m) - (a # t) = (m - t)
by (auto simp: list-minus)

class ev-eq =
 fixes ev-eq :: 'a \Rightarrow 'a \Rightarrow bool
 assumes refl: ev-eq a a
 assumes comm: ev-eq a b = ev-eq b a

definition filter-chan-set a cs = (\neg (\exists \ e\in cs. ev-eq a e))

lemma in-imp-not-fcs:
 \(x\in S \Rightarrow \neg \text{filter-chan-set} x S \)
apply (auto simp: filter-chan-set-def)
apply (rule_tac bexI, auto simp: refl)
done

fun tr-filter::'a::ev-eq list ⇒ 'a set ⇒ 'a list where
 tr-filter [] cs = []
 | tr-filter (x#xs) cs = (if (filter-chan-set x cs) then (x#(tr-filter xs cs))
 else (tr-filter xs cs))

lemma tr-filter-conc: (tr-filter (a@b) cs) = ((tr-filter a cs) @ (tr-filter b cs))
by (induct a, auto)

lemma filter-chan-set-hd-tr-filter:
 tr-filter l cs ≠ [] ---› filter-chan-set (hd (tr-filter l cs)) cs
by (induct l, auto)

lemma tr-filter-conc-eq1:
 (a@b = (tr-filter (a@c) cs)) ---› (b = (tr-filter c cs))
apply (induct a, auto)
apply (case-tac tr-filter (a@cs) = [], simp-all)
apply (drule filter-chan-set-hd-tr-filter[rule-format])
apply (case-tac tr-filter (a@c) cs, simp-all)
done

lemma tr-filter-conc-eq2:
 (a@b = (tr-filter (a@c) cs)) ---› (a = (tr-filter a cs))
apply (induct a, auto)
apply (case-tac tr-filter (a@cs) = [], simp-all)
apply (drule filter-chan-set-hd-tr-filter[rule-format])
apply (case-tac tr-filter (a@c) cs, simp-all)
apply (drule filter-chan-set-hd-tr-filter[rule-format])
apply (case-tac tr-filter (a@c) cs, simp-all)
done

lemma tr-filter-conc-eq:
 (a@b = (tr-filter (a@c) cs)) = (b = (tr-filter c cs) & a = (tr-filter a cs))
apply (rule, rule)
apply (rule tr-filter-conc-eq1[rule-format, of a], clarsimp)
apply (rule tr-filter-conc-eq2[rule-format, of a b c], clarsimp)
apply (clarsimp simp: tr-filter-conc)
done

lemma tr-filter-conc-eq3:
 (b = (tr-filter (a@c) cs)) = (∃ b1 b2. b=b1@b2 & b2 = (tr-filter c cs) & b1 = (tr-filter a cs))
by (rule, auto simp: tr-filter-conc)

lemma tr-filter-un:
\[\text{tr-filter } l \ (s1 \cup s2) = \text{tr-filter} \ (\text{tr-filter } l \ s1) \ s2 \]
\text{by (induct } l, \text{ auto simp: filter-chan-set-def)}

instantiation list :: (ev-eq) ev-eq

fun ev-eq-list where
\[
\begin{align*}
\text{ev-eq-list } [] \ [] & = \text{True} \\
\text{ev-eq-list } l \ [] & = \text{False} \\
\text{ev-eq-list } [] \ l & = \text{False} \\
\text{ev-eq-list } (x#xs) \ (y#ys) & = \begin{cases}
\text{if } (\text{ev-eq } x \ y) \text{ then } (\text{ev-eq-list } xs \ ys) \text{ else False}
\end{cases}
\end{align*}
\]

instance

proof

fix a :: 'a::ev-eq list **show** ev-eq a a
\text{by (induct } a, \text{ auto simp: ev-eq-class.refl)}

next

fix a b :: 'a::ev-eq list **show** ev-eq a b = ev-eq b a
\text{apply (cases } a)
\text{apply (cases } b, \text{ simp-all add: ev-eq-class.comm)}
\text{apply (hypsubst-thin)}
\text{apply (induct } b, \text{ simp-all add: ev-eq-class.comm)}
\text{apply (case-tac ev-eq aa a, simp-all add: ev-eq-class.comm)}
\text{apply (case-tac list = [], simp-all)}
\text{apply (case-tac b, simp-all)}
\text{apply (atomize)}
\text{apply (erule-tac x=hd list in allE)}
\text{apply (erule-tac x=tl list in allE)}
\text{apply (subst (asm) hd-Cons-tl, simp-all)}
done
qed

11.2 Definitions

abbreviation sub::'a list ⇒ 'a list ⇒ bool (- ≤ -)
\text{where } l1 \leq l2 == \text{Sublist.prefixeq } l1 \ l2

lemma list-diff-empty-eq: l1 - l2 = [] \implies l2 \leq l1 \implies l1 = l2
\text{by (auto simp: prefixeq-def)}

The definitions of reactive process alphabets and healthiness conditions are given in the following. The healthiness conditions of reactive processes are defined by \(R1, R2, R3\) and their composition \(R\).

type-synonym '∅ refusal = '∅ set

record '∅ alpha-rp = alpha-d +
\text{wait:: bool}
\text{tr :: '∅ trace}
\text{ref :: '∅ refusal}
Note that we define here the class of UTP alphabets that contain wait,
tr and ref, or, in other words, we define here the class of reactive process
alphabets.

type-synonym (ϑ', σ) alphabet-rp $= (\vartheta', \sigma)$ alpha-rp-scheme alphabet

type-synonym (ϑ', σ) relation-rp $= (\vartheta', \sigma)$ alphabet-rp relation

definition $\text{diff-tr } s1 \ s2 = ((\text{tr } s1) - (\text{tr } s2))$

definition $\text{spec } :: [\text{bool, bool, } (\vartheta', \sigma) \text{ relation-rp}] \Rightarrow (\vartheta', \sigma) \text{ relation-rp}$

where $\text{spec } b \ b' \ P \equiv \lambda \ (A, A'). \ P (A[\text{wait} := b], A'[\text{ok} := b'])$

abbreviation $\text{Speciftt } (-t, t)$ where $(P)^t \equiv \text{spec } \text{True } \text{True } P$

abbreviation $\text{Specifff } (-f, f)$ where $(P)^f \equiv \text{spec } \text{False } \text{False } P$

abbreviation $\text{Speciftf } (-t, f)$ where $(P)^t \equiv \text{spec } \text{True } \text{False } P$

abbreviation $\text{Specifft } (-f, t)$ where $(P)^f \equiv \text{spec } \text{False } \text{True } P$

definition $R1 :: ((\vartheta', \sigma) \text{ alphabet-rp}) \ Healthiness-condition$

where $R1 \ (P) \equiv \lambda \ (A, A'). \ (P (A, A')) \land (\text{tr } A \leq \text{tr } A')$

definition $R2 :: ((\vartheta', \sigma) \text{ alphabet-rp}) \ Healthiness-condition$

where $R2 \ (P) \equiv \lambda \ (A, A'). \ (P (A[\text{tr} := \text{[]}], A'[\text{tr} := \text{tr } A' - \text{tr } A]) \land \text{tr } A \leq \text{tr } A')$

definition Πrea

where $\Pi\text{rea} \equiv \lambda \ (A, A'). \ (\neg \text{ok } \land \text{tr } A \leq \text{tr } A') \lor (\text{ok } \land \text{tr } A = \text{tr } A' \land \text{ref } A = \text{ref } A' \land \text{more } A = \text{more } A')$

definition $R3 :: ((\vartheta', \sigma) \text{ alphabet-rp}) \ Healthiness-condition$

where $R3 \ (P) \equiv (\Pi\text{rea} \circ \text{wait} \circ \text{fst} \circ P)$

definition $R :: ((\vartheta', \sigma) \text{ alphabet-rp}) \ Healthiness-condition$

where $R \equiv R3 \circ R2 \circ R1$

lemmas $\text{rp-defs } = R1\text{-def } R2\text{-def } \Pi\text{rea-def } R3\text{-def } R\text{-def } \text{spec-def}$

11.3 Proofs

lemma $\text{tr-filter-empty } [\text{simp}]$: $\text{tr-filter l } \{\} = l$

by (induct l) $(\text{auto simp: } \text{filter-chan-set-def})$

lemma $\text{trf-imp-filters} \ [\text{x}: \text{tr-filter ys cs}; \text{x} \neq \text{[]}] \Rightarrow \text{filter-chan-set} \ (\text{hd x})$

cs

apply $(\text{induct x}, \text{auto})$

apply $(\text{induct y}, \text{auto})$

apply $(\text{case-tac filter-chan-set a cs, auto})$

done
lemma filtercs-imp-trf:
\[\text{filter-chan-set } x \text{ cs; } xs = \text{tr-filter } ys \text{ cs} \implies x#xs = \text{tr-filter } (x#ys) \text{ cs} \]
by (induct xs) auto

lemma alpha-d-more-eqI:
assumes \(tr \, r = tr \, r' \) \(\text{wait } r = \text{wait } r' \) \(\text{ref } r = \text{ref } r' \) \(\text{more } r = \text{more } r' \)
shows \(\alpha-d \cdot \text{more } r = \alpha-d \cdot \text{more } r' \)
using assms by (cases r, cases r') auto

lemma alpha-d-more-eqE:
assumes \(\alpha-d \cdot \text{more } r = \alpha-d \cdot \text{more } r' \)
obtains \(tr \, r = tr \, r' \) \(\text{wait } r = \text{wait } r' \) \(\text{ref } r = \text{ref } r' \) \(\text{more } r = \text{more } r' \)
using assms by (cases r, cases r') auto

lemma alpha-rp-eqE:
assumes \(r = r' \)
obtains \(\text{ok } r = \text{ok } r' \) \(tr \, r = tr \, r' \) \(\text{wait } r = \text{wait } r' \) \(\text{ref } r = \text{ref } r' \) \(\text{more } r = \text{more } r' \)
using assms by (cases r, cases r') auto

lemma R-idem: \(R \circ R = R \)
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R-idem2: \(R \circ (R \, P) = R \, P \)
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R1-idem: \(R1 \circ R1 = R1 \)
by (auto simp: rp-defs design-defs)

lemma R1-idem2: \(R1 \circ (R1 \, x) = R1 \, x \)
by (auto simp: rp-defs design-defs)

lemma R2-idem: \(R2 \circ R2 = R2 \)
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def)

lemma R2-idem2: \(R2 \circ (R2 \, x) = R2 \, x \)
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def)

lemma R3-idem: \(R3 \circ R3 = R3 \)
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R3-idem2: \(R3 \circ (R3 \, x) = R3 \, x \)
by (auto simp: R3-idem[simplified Fun.comp-def fun-eq-iff] fun-eq-iff)

lemma R1-R2-commute: \((R1 \circ R2) = (R2 \circ R1) \)
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def)

lemma R1-R3-commute: \((R1 \circ R3) = (R3 \circ R1) \)
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)
lemma $R2$-$R3$-commute: $R2 \circ R3 = R3 \circ R2$
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def split: cond-splits elim: prefixE)

lemma R-abs-$R1$: $R \circ R1 = R$
apply (auto simp: R-def)
apply (subst R1-idem[symmetric])
apply (auto)
done

lemma R-abs-$R2$: $R \circ R2 = R$
by (auto simp: rp-defs design-defs fun-eq-iff)

lemma R-abs-$R3$: $R \circ R3 = R$
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits elim: prefixE)

lemma R-is-$R1$:
 assumes A: P is R healthy
 shows P is $R1$ healthy
proof -
 have $R \; P = P$
 using assms by (simp-all only: Healthy-def)
 moreover
 have $(R \; P)$ is $R1$ healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
 ultimately show ?thesis by simp
qed

lemma R-is-$R2$:
 assumes A: P is R healthy
 shows P is $R2$ healthy
proof -
 have $R \; P = P$
 using assms by (simp-all only: Healthy-def)
 moreover
 have $(R \; P)$ is $R2$ healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff prefixeq-def prefix-def split: cond-splits)
 ultimately show ?thesis by simp
qed

lemma R-is-$R3$:
 assumes A: P is R healthy
 shows P is $R3$ healthy
proof -
 have $R \; P = P$
 using assms by (simp-all only: Healthy-def)
 moreover

have $(R \ P)$ is $R3$ healthy
by (auto simp add; design-defs rp-defs fun-eq-iff split: cond-splits)
ultimately show "thesis by simp"

qed

lemma $R\text{-disj}$:
assumes A: P is R healthy
assumes B: Q is R healthy
shows $(P \lor Q)$ is R healthy
proof -
have $R \ P = P$ and $R \ Q = Q$
 using assms by (simp-all only: Healthy-def)
moreover
have $((R \ P) \lor (R \ Q))$ is R healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
ultimately show "thesis by simp"

qed

lemma $R\text{-disj2}$: $(R \ (P \lor Q)) = (R \ P \lor R \ Q)$
apply (subst $R\text{-disj}$[simplified Healthy-def, where $P=R \ P$])
apply (simp-all add: R-idem2)
apply (auto simp: fun-eq-iff rp-defs split: cond-splits)
done

lemma $R1\text{-comp}$:
assumes P is $R1$ healthy
 and Q is $R1$ healthy
shows $(P ; ; Q)$ is $R1$ healthy
proof -
have $R1 \ P = P$ and $R1 \ Q = Q$
 using assms by (simp-all only: Healthy-def)
moreover
have $((R1 \ P) ; ; (R1 \ Q))$ is $R1$ healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
ultimately show "thesis by simp"

qed

lemma $R1\text{-comp2}$:
assumes A: P is $R1$ healthy
assumes B: Q is $R1$ healthy
shows $R1 \ (P ; ; Q) = ((R1 \ P); ; Q)$
using $A \ B$
apply (subst $R1\text{-comp}$[simplified Healthy-def, symmetric])
apply (auto simp: fun-eq-iff rp-defs design-defs)
done

lemma J-is-$R1$: J is $R1$ healthy
by (auto simp: rp-defs design-defs fun-eq-iff elim: alpha-d-more-eqE)
lemma J-is-R2: J is R2 healthy
 by (auto simp: rp-defs design-defs fun-eq-iff prefix-def prefixeq-def
 elim!: alpha-d-more-eqE intro!: alpha-d-more-eqI)

lemma R1-H2-commute2: R1 (H2 P) = H2 (R1 P)
 by (auto simp add: H2-def R1-def J-def fun-eq-iff
 elim!: alpha-d-more-eqE intro!
 alpha-d-more-eqI)

lemma R1-H2-commute: R1 o H2 = H2 o R1
 by (auto simp: R1-H2-commute2)

lemma R2-H2-commute: R2 o H2 = H2 o R2
 by (auto simp: fun-eq-iff prefix-def prefixeq-def
 elim!: alpha-d-more-eqE intro!: alpha-d-more-eqI alpha-rp.equality)

lemma R2-H2-commute2: R2 (H2 P) = H2 (R2 P)
 apply (auto simp: fun-eq-iff prefix-def prefixeq-def
 elim!: alpha-d-more-eqE intro!: alpha-d-more-eqI alpha-rp.equality)
 apply (rule-tac b=ba in comp-intro)
 apply (rule-tac b=ba in comp-intro, auto simp: alpha-rp.equality)
 apply (rule-tac b=ba in comp-intro, auto simp: alpha-rp.equality)
 apply (rule-tac x=zs in exI, auto)
 done

lemma R3-H2-commute: R3 o H2 = H2 o R3
 by (auto simp: R3-H2-commute2)

lemma R-join:
 assumes x is R healthy
 and y is R healthy
 shows (x ⊓ y) is R healthy
 proof
 have R x = x and R y = y
 using assms by (simp-all only: Healthy-def)
 moreover have ((R x) ⊓ (R y)) is R healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond_splits)
 ultimately show ?thesis by simp
 qed

lemma R-meet:

47
assumes A: x is R healthy
and B: y is R healthy
shows $(x \triangleleft y)$ is R healthy

proof —
have $R \; x = x$ and $R \; y = y$
 using assms by (simp-all only: Healthy-def)
moreover
have $((R \ x) \sqcup (R \ y))$ is R healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
ultimately show ?thesis by simp
qed

lemma R-H2-commute: $R \circ H2 = H2 \circ R$
apply (auto simp add: rp-defs design-defs fun-eq-iff split: cond-splits
 elim: alpha-d-more-eqE)
apply (rule-tac $b=ba$[tr := tr b] in comp-intro, auto split: cond-splits
 elim: alpha-d-more-eqE alpha-rp-eqE intro!: alpha-d-more-eqI alpha-rp.equality)
apply (rule-tac $s=ba$ in subst, auto intro!: alpha-d-more-eqI alpha-rp.equality)
apply (rule-tac $s=ba$ in subst, auto intro!: alpha-d-more-eqI alpha-rp.equality)
apply (rule-tac $b=ba$[tr := tr b] in comp-intro, auto split: cond-splits)
apply (rule-tac $s=ba$ in subst,
 auto elim: alpha-d-more-eqE alpha-rp-eqE intro: alpha-d-more-eqI alpha-rp.equality)
apply (rule-tac $b=ba$[tr := tr b] in comp-intro,
 auto elim: alpha-d-more-eqE alpha-rp-eqE intro: alpha-d-more-eqI alpha-rp.equality
split: cond-splits)
apply (rule-tac $s=ba$ in subst,
 auto elim: alpha-d-more-eqE alpha-rp-eqE intro: alpha-d-more-eqI alpha-rp.equality)
done

lemma R-H2-commute2: $R \; (H2 \; P) = H2 \; (R \; P)$
by (auto simp: fun-eq-iff R-H2-commute[simplified fun-eq-iff Fun.comp-def])

end

12 CSP processes

theory CSP-Processes
imports Reactive-Processes
begin

A CSP process is a UTP reactive process that satisfies two additional healthiness conditions called $CSP1$ and $CSP2$. A reactive process that satisfies $CSP1$ and $CSP2$ is said to be CSP healthy.

12.1 Definitions

We introduce here the definitions of the CSP healthiness conditions.
definition **CSP1**::((\'\vartheta, \'\sigma) alphabet-rp) Healthiness-condition
where **CSP1** (P) \(\equiv\) P \(\lor\) (\(\lambda\) (A, A'). \(\neg\)ok A \(\land\) tr A \(\leq\) tr A')

definition J-csp
where **J-csp** \(\equiv\) \(\lambda\) (A, A'). \(\langle\) ok A \(\rightarrow\) ok A', \(\land\) tr A = tr A' \(\land\) wait A = wait A' \(\land\) ref A = ref A' \(\land\) more A = more A' \rangle

definition **CSP2::((\'\vartheta, \'\sigma) alphabet-rp) Healthiness-condition
where **CSP2** (P) \(\equiv\) P ; ; **J-csp**

definition is-CSP-process::((\'\vartheta,\'\sigma) relation-rp \(\Rightarrow\) bool where
is-CSP-process P \(\equiv\) P is **CSP1** healthy \(\land\) P is **CSP2** healthy \(\land\) P is R healthy

lemmas csp-defs = **CSP1**-def **J-csp**-def **CSP2**-def is-CSP-process-def

lemma is-CSP-processE1 [elim?]:
assumes is-CSP-process P
obtains P is **CSP1** healthy \(\land\) P is **CSP2** healthy \(\land\) P is R healthy
using assms unfolding is-CSP-process-def by simp

lemma is-CSP-processE2 [elim?]:
assumes is-CSP-process P
obtains **CSP1** P = P **CSP2** P = P R P = P
using assms unfolding is-CSP-process-def by (simp add: Healthy-def')

12.2 Proofs

Theorems and lemmas relative to CSP processes are introduced here.

lemma CSP1-CSP2-commute: **CSP1** o **CSP2** = **CSP2** o **CSP1**
by (auto simp: csp-defs fun-eq-iff)

lemma CSP2-is-H2: H2 = **CSP2**
apply (clarsimp simp add: csp-defs design-defs rp-defs fun-eq-iff)
apply (rule iffI)
apply (erule-tac ![\!] comp-elim)
apply (rule-tac ![\!] b=ba in comp-intro)
apply (auto elim!: alpha-d-more-eqE intro!: alpha-d-more-eqI)
done

lemma H2-CSP1-commute: H2 o **CSP1** = **CSP1** o H2
apply (subst CSP2-is-H2[simplified Healthy-def'])+
apply (rule CSP1-CSP2-commute[symmetric])
done

lemma H2-CSP1-commute2: H2 (**CSP1** P) = **CSP1** (H2 P)
by (simp add: H2-CSP1-commute[simplified Fun.comp-def fun-eq-iff, rule-format] fun-eq-iff)

lemma **CSP1**-R-commute:
\[CSP1 (R \, P) = R (CSP1 \, P) \]

by (auto simp: csp-defs rp-defs fun-eq-iff prefixeq-def split: cond-splits)

lemma CSP2-R-commute:
\[CSP2 (R \, P) = R (CSP2 \, P) \]
apply (subst CSP2-is-H2[symmetric])+
apply (rule R-H2-commute2[symmetric])
done

lemma CSP1-idem: CSP1 = CSP1 o CSP1
by (auto simp: csp-defs fun-eq-iff)

lemma CSP2-idem: CSP2 = CSP2 o CSP2
by (auto simp: csp-defs fun-eq-iff)

lemma CSP-is-CSP1:
assumes A: is-CSP-process P
shows P is CSP1 healthy
using A by (auto simp: is-CSP-process-def design-defs)

lemma CSP-is-CSP2:
assumes A: is-CSP-process P
shows P is CSP2 healthy
using A by (simp add: design-defs prefixeq-def is-CSP-process-def)

lemma CSP-is-R:
assumes A: is-CSP-process P
shows P is R healthy
using A by (simp add: design-defs prefixeq-def is-CSP-process-def)

lemma t-or-f-a: \(P(a, b) \implies ((P(a, b|\{ok:=\text{True}|})) \lor (P(a, b|\{ok:=\text{False}|}))) \)
apply (clarsimp simp: csp-defs design-defs rp-defs split: cond-splits elim: prefixE)
apply (case_tac ok b, auto)
apply (rule-tac t=b|\{ok:=\text{True}|} and s=b in subst, simp-all)
by (subgoal-tac b=b|\{ok:=\text{False}|}, simp-all)

lemma CSP2-ok-a:
\[(CSP2 \, P)(a, b|\{ok:=\text{True}|}) \implies (P(a, b|\{ok:=\text{True}|}) \lor P(a, b|\{ok:=\text{False}|})) \]
apply (clarsimp simp: csp-defs design-defs rp-defs split: cond-splits elim: prefixE)
apply (case-tac ok ba)
apply (rule-tac t=b|\{ok:=\text{True}|} and s=ba in subst, simp-all)
apply (drule-tac b=b|\{ok:=\text{False}|} and a=ba in back-subst)
apply (auto intro: alpha-rp.equality)
done

lemma CSP2-ok-b:
\[(P(a, b|\{ok:=\text{True}|}) \lor P(a, b|\{ok:=\text{False}|})) \implies (CSP2 \, P)(a, b|\{ok:=\text{True}|}) \]
by (auto simp: csp-defs design-defs rp-defs)

lemma CSP2-ok:
\[(\text{CSP}^2 \ P)(a, b[ok := \text{True}]) = (P(a, b[ok := \text{True}]) \lor P(a, b[ok := \text{False}]))\]

apply (rule iffI)
apply (simp add: CSP2-ok-a)
by (simp add: CSP2-ok-b)

lemma CSP2-notok-a: \(\text{CSP}^2 P(a, b[ok := \text{False}]) \Rightarrow P(a, b[ok := \text{False}])\)
apply (clarsimp simp: csp-defs design-defs rp-defs)
apply (case-tac ok ba)
apply (rule-tac t = b[ok := True] and s = ba in subst, simp-all)
apply (drule-tac b = b[ok := False] and a = ba in back-subst)
apply (auto intro: alpha-rp, equality)
done

lemma CSP2-notok-b: \(P(a, b[ok := \text{False}]) = (\text{CSP}^2 P)(a, b[ok := \text{False}])\)
by (auto simp: csp-defs design-defs rp-defs)

lemma CSP2-notok: \(\text{CSP}^2 P(a, b[ok := \text{False}]) = P(a, b[ok := \text{False}])\)
apply (rule iffI)
apply (simp add: CSP2-notok-a)
by (simp add: CSP2-notok-b)

lemma CSP2-t-f:
\[\begin{align*}
\text{assumes } & A: (\text{CSP}^2 (R (r \vdash p)))(a, b) \\
& \text{and } B: ((\text{CSP}^2 (R (r \vdash p)))(a, b[ok := \text{False}]) \lor \\
& ((\text{CSP}^2 (R (r \vdash p)))(a, b[ok := \text{True}]) \Rightarrow Q) \\
\text{shows } & Q
\end{align*}\]
apply (rule B)
apply (rule disjI2)
apply (insert A)
apply (auto simp add: csp-defs design-defs rp-defs)
done

lemma disj-CSP1:
\[\begin{align*}
\text{assumes } & P \text{ is CSP}^1 \text{ healthy} \\
& Q \text{ is CSP}^1 \text{ healthy} \\
\text{shows } & (P \lor Q) \text{ is CSP}^1 \text{ healthy}
\end{align*}\]
using assms by (auto simp: csp-defs design-defs rp-defs fun-eq-iff)

lemma disj-CSP2:
\[\begin{align*}
P \text{ is CSP}^2 \text{ healthy} & \Rightarrow Q \text{ is CSP}^2 \text{ healthy} \\
& \Rightarrow (P \lor Q) \text{ is CSP}^2 \text{ healthy}
\end{align*}\]
by (simp add: CSP2-is-H2[symmetric] Healthy-def' design-defs comp-ndet-l-distr)

lemma disj-CSP:
\[\begin{align*}
\text{assumes } & A: \text{is-CSP-process } P \\
& \text{assumes } B: \text{is-CSP-process } Q \\
\text{shows } & \text{is-CSP-process } (P \lor Q)
\end{align*}\]
apply (simp add: is-CSP-process-def Healthy-def)
apply (subst disj-CSP2[simplified Healthy-def, symmetric])
apply (rule A[THEN CSP-is-CSP2, simplified Healthy-def])
apply (rule B[THEN CSP-is-CSP2, simplified Healthy-def], simp)
apply (subst disj-CSP1[simplified Healthy-def, symmetric])
apply (rule A[THEN CSP-is-CSP1, simplified Healthy-def])
apply (rule B[THEN CSP-is-CSP1, simplified Healthy-def], simp)
apply (subst R-disj[simplified Healthy-def])
apply (rule A[THEN CSP-is-R, simplified Healthy-def])
apply (rule B[THEN CSP-is-R, simplified Healthy-def], simp)
done

lemma seq-CSP1:
 assumes A: P is CSP1 healthy
 assumes B: Q is CSP1 healthy
 shows (P ; ; Q) is CSP1 healthy
 using A B by (auto simp: csp-defs design-defs rp-defs fun-eq-iff)

lemma seq-CSP2:
 assumes A: Q is CSP2 healthy
 shows (P ; ; Q) is CSP2 healthy
 using A
 by (auto simp: CSP2-is-H2[symmetric] H2-J[symmetric])

lemma seq-R:
 assumes P is R healthy
 and Q is R healthy
 shows (P ; ; Q) is R healthy

proof -
 have R P = P and R Q = Q
 using assms by (simp-all only: Healthy-def)
 moreover
 have (R P ; ; R Q) is R healthy
 apply (auto simp add: design-defs rp-defs prefixeq-def fun-eq-iff split: cond-splits)
 apply (erule-tac x =zs @ zsa in allE, auto split: cond-splits)+
 apply (rule-tac a in comp-intro, auto split: cond-splits)
 apply (rule-tac x=zs in exI, auto split: cond-splits)
 apply (rule-tac b=ba in comp-intro, auto split: cond-splits)
 done

ultimately show ?thesis by simp
qed

lemma seq-CSP:
 assumes A: P is CSP1 healthy
 and B: P is R healthy
 and C: is-CSP-process Q
 shows is-CSP-process (P ; ; Q)
 apply (auto simp add: is-CSP-process-def)
 apply (subst seq-CSP1[simplified Healthy-def])
 apply (rule A[simplified Healthy-def])
 apply (rule CSP-is-CSP1[OF C, simplified Healthy-def])
apply (simp add: Healthy-def, subst CSP1-idem, auto)
apply (subst seq-CSP2[simplified Healthy-def])
apply (rule CSP-is-CSP2[OF C, simplified Healthy-def])
apply (simp add: Healthy-def, subst CSP2-idem, auto)
apply (subst seq-R[simplified Healthy-def])
apply (rule B[simplified Healthy-def])
apply (rule CSP-is-R[OF C, simplified Healthy-def])
apply (simp add: Healthy-def, subst R-idem2, auto)
done

lemma rd-ind-wait: (R(¬(P t f) ⊢ (P t f)))
 = (R(¬(λ (A, A'). P (A, A'[ok := False])))
 ⊢ (λ (A, A'). P (A, A'[ok := True])))
by (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits)

lemma rd-H1: (R((¬ (λ (A, A'). P (A, A'[ok := False])))
 ⊢ (λ (A, A'). P (A, A'[ok := True])))
 = (R (¬ H1 (λ (A, A'). P (A, A'[ok := False])))
 ⊢ H1 (λ (A, A'). P (A, A'[ok := True])))
by (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits elim: alpha-d-more-eqE)

lemma rd-H1-H2: (R((¬ H1 (λ (A, A'). P (A, A'[ok := False])))
 ⊢ H1 (λ (A, A'). P (A, A'[ok := True])))
 = (R((¬ H1 o H2) (λ (A, A'). P (A, A'[ok := False])))
 ⊢ (H1 o H2) (λ (A, A'). P (A, A'[ok := True])))
by (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits)

lemma rd-H1-H2-R-H1-H2:
 (R ((¬ H1 o H2) (λ (A, A'). P (A, A'[ok := False])))
 ⊢ (H1 o H2) (λ (A, A'). P (A, A'[ok := True])))
 = (R (H1 o H2) P)
apply (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits)
apply (erule notE) back back
apply (rule-tac b=ba in comp-intro, auto)
apply (rule-tac t=ba[ok := False] and s=ba in subst, auto intro: alpha-d.equality)
apply (erule notE) back back
apply (rule-tac b=ba in comp-intro, auto)
apply (rule-tac t=ba\{ok := False\} and s=ba in subst, auto intro: alpha-d.equality)
apply (case-tac ok ba)
apply (rule-tac t=ba in comp-intro, auto)
apply (rule-tac b=ba in comp-intro, auto)
apply (erule notE) back
apply (rule-tac t=ba in subst, auto intro: alpha-d.equality)
done

lemma CSP1-is-R1-H1:
 assumes P is R1 healthy
 shows CSP1 P = R1 (H1 P)
using assms
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-is-R1-H1-2: CSP1 (R1 P) = R1 (H1 P)
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-R1-commute: CSP1 o R1 = R1 o CSP1
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-R1-commute2: CSP1 (R1 P) = R1 (CSP1 P)
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-is-R1-H1-b:
 \(P = (R \circ R1 \circ H1 \circ H2) P = (P = (R \circ CSP1 \circ H2) P) \)
apply (simp add: fun-eq-iff)
apply (subst H1-H2-commute2)
apply (subst R1-H2-commute2)
apply (subst CSP1-is-R1-H1-2[symmetric])
apply (subst H2-CSP1-commute2)
apply (subst R1-H2-commute2[symmetric])
apply (subst CSP1-R1-commute2)
apply (subst R-abs-R1[simplified Fun.comp-def fun-eq-iff])
apply (auto)
done

lemma CSP1-join:
 assumes A: x is CSP1 healthy
 and B: y is CSP1 healthy
 shows \((x \cap y) \) is CSP1 healthy
 using A B
by (simp add: Healthy-def CSP1-def fun-eq-iff utp-defs)

lemma CSP2-join:
 assumes A: x is CSP2 healthy
 and B: y is CSP2 healthy
shows \((x \sqcap y)\) is CSP2 healthy
using \(A, B\)
apply (simp add: design-defs csp-defs fun-eq-iff)
apply (rule allI)
apply (rule allI)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=b\) in allE)+
by (auto)

lemma CSP1-meet:
assumes \(A: x\) is CSP1 healthy
and \(B: y\) is CSP1 healthy
shows \((x \sqcap y)\) is CSP1 healthy
using \(A, B\)
apply (simp add: Healthy-def CSP1-def fun-eq-iff utp-defs)
apply (rule allI)
apply (rule allI)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=b\) in allE)+
by (auto)

lemma CSP2-meet:
assumes \(A: x\) is CSP2 healthy
and \(B: y\) is CSP2 healthy
shows \((x \sqcap y)\) is CSP2 healthy
using \(A, B\)
apply (simp add: Healthy-def CSP2-def fun-eq-iff)
apply (rule allI)+
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=b\) in allE)+
apply (auto)
apply (rule-tac \(b=ca\) in comp-intro)
apply (auto simp: J-csp-def)
done

lemma CSP-joint:
assumes \(A: \text{is-CSP-process} x\)
and \(B: \text{is-CSP-process} y\)
shows \(\text{is-CSP-process} (x \sqcap y)\)
using \(A, B\)
by (simp add: is-CSP-process-def CSP1-joint CSP2-joint R-joint)

lemma CSP-meet:
assumes \(A: \text{is-CSP-process} x\)
and \(B: \text{is-CSP-process} y\)
shows \(\text{is-CSP-process} (x \sqcup y)\)
using A B
by (simp add: is-CSP-process-def CSP1-meet CSP2-meet R-meet)

12.3 CSP processes and reactive designs

In this section, we prove the relation between CSP processes and reactive designs.

lemma rd-is-CSP1: (R (r ⊢ p)) is CSP1 healthy
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits elim: prefixE)

lemma rd-is-CSP2:
 assumes A: ∀ a b. r (a, b(|ok := True)) → r (a, b(|ok := False))
 shows (R (r ⊢ p)) is CSP2 healthy
apply (subst CSP2-is-H2[symmetric])
apply (simp add: Healthy-def)
apply (subst R-H2-commute2[symmetric])
apply (subst design-H2[simplified Healthy-def], auto simp: A)
done

lemma rd-is-CSP:
 assumes A: ∀ a b. r (a, b(|ok := True)) → r (a, b(|ok := False))
 shows is-CSP-process (R (r ⊢ p))
apply (simp add: is-CSP-process-def Healthy-def fun-eq-iff)
apply (subst R-idem2)
apply (subst rd-is-CSP2[simplified Healthy-def, symmetric], rule A)
apply (subst rd-is-CSP1[simplified Healthy-def, symmetric], simp)
done

lemma CSP-is-rd:
 assumes A: is-CSP-process P
 shows P = (R (¬(P f f) ⊢ (P ⊢ f)))
apply (subst rd-ind-wait)
apply (subst rd-H1)
apply (subst rd-H1-H2)
apply (subst rd-H1-H2-R-H1-H2)
apply (subst R-abs-R1[symmetric])
apply (subst CSP1-is-R1-H1-b)
apply (subst CSP2-is-H2)
apply (simp)
apply (subst CSP-is-CSP2[OF A, simplified Healthy-def, symmetric])
apply (subst CSP-is-CSP1[OF A, simplified Healthy-def, symmetric])
apply (subst CSP-is-R[OF A, simplified Healthy-def, symmetric], simp)
done

end
13 Circus actions

theory Circus-Actions
imports HOLCF CSP-Processes
begin

In this section, we introduce definitions for Circus actions with some useful theorems and lemmas.

default-sort type

13.1 Definitions

The Circus actions type is defined as the set of all the CSP healthy reactive processes.

typedef (′ϑ::ev-eq,′σ) action = {p::(′ϑ,′σ) relation-rp. is-CSP-process p}

morphisms relation-of action-of

proof –
 have R (false ⊢ true) ∈ {p :: (′ϑ,′σ) relation-rp. is-CSP-process p}
 by (auto intro: rd-is-CSP)
 thus ?thesis by auto
qed

print-theorems

The type-definition introduces a new type by stating a set. In our case, it is the set of reactive processes that satisfy the healthiness-conditions for CSP-processes, isomorphic to the new type. Technically, this construct introduces two constants (morphisms) definitions relation_of and action_of as well as the usual axioms expressing the bijection \(\text{action-of} \ (\text{relation-of} \ ?x) = ?x \) and \(?y \in \{p. \text{is-CSP-process} \ p\} \implies \text{relation-of} \ (\text{action-of} \ ?y) = ?y \).

lemma relation-of-CSP: is-CSP-process (relation-of x)

proof –
 have (relation-of x) :{p. is-CSP-process p} by (rule relation-of)
 then show is-CSP-process (relation-of x) ..
qed

lemma relation-of-CSP1: (relation-of x) is CSP1 healthy
by (rule CSP-is-CSP1[OF relation-of-CSP])

lemma relation-of-CSP2: (relation-of x) is CSP2 healthy
by (rule CSP-is-CSP2[OF relation-of-CSP])

lemma relation-of-R: (relation-of x) is R healthy
by (rule CSP-is-R[OF relation-of-CSP])
13.2 Proofs

In the following, Circus actions are proved to be an instance of the Complete_Lattice class.

Lemma relation-of-spec-f-f:
\[
\forall a \ b. \ (\text{relation-of } y \to \text{relation-of } x) \ (a, b) \Rightarrow \\
(\text{relation-of } y)^{f} (a[tr := []], b) \Rightarrow \\
(\text{relation-of } x)^{f} (a[tr := []], b)
\]
by (auto simp: spec-def)

Lemma relation-of-spec-t-f:
\[
\forall a \ b. \ (\text{relation-of } y \to \text{relation-of } x) \ (a, b) \Rightarrow \\
(\text{relation-of } y)^{t} (a[tr := []], b) \Rightarrow \\
(\text{relation-of } x)^{t} (a[tr := []], b)
\]
by (auto simp: spec-def)

Instantiation action :: (ev-eq, type) below
begin
Definition ref-def : \(P \sqsubseteq Q \equiv [(\text{relation-of } Q) \to (\text{relation-of } P)]\)
instance ..
end

instance action :: (ev-eq, type) po
proof
fix x y z :: (a, 'b) action
{
 show \(x \sqsubseteq x\) by (simp add: ref-def utp-defs)
next
 assume \(x \sqsubseteq y\) and \(y \sqsubseteq z\) then show \(x \sqsubseteq z\)
 by (simp add: ref-def utp-defs)
next
 assume A: \(x \sqsubseteq y\) and B: \(y \sqsubseteq x\) then show \(x = y\)
 by (auto simp add: ref-def relation-of-inject[symmetric] fun-eq-iff)
}
qed

Instantiation action :: (ev-eq, type) lattice
begin

Definition inf-action : \((\operatorname{inf} P \ Q \equiv \operatorname{action-of} ((\text{relation-of } P) \cap \text{relation-of } Q))\)
Definition sup-action : \((\operatorname{sup} P \ Q \equiv \operatorname{action-of} ((\text{relation-of } P) \cup \text{relation-of } Q))\)
Definition less-eq-action : \((\operatorname{less-eq} (P::(a, 'b) \ \operatorname{action}) \ Q \equiv P \sqsubseteq Q)\)
Definition less-action : \((\operatorname{less} (P::(a, 'b) \ \operatorname{action}) \ Q \equiv P \sqsubseteq Q \land \neg Q \sqsubseteq P)\)

instance
proof
fix x y z : (a, 'b) action
{
 show \((x < y) = (x \leq y \land \neg y \leq x)\)
}
by (simp add: less-action less-eq-action)
next
 show \(x \leq x \) by (simp add: less-eq-action)
next
 assume \(x \leq y \) and \(y \leq z \)
 then show \(x \leq z \)
 by (simp add: less-eq-action ref-def utp-defs)
next
 assume \(x \leq y \) and \(y \leq x \)
 then show \(x = y \)
 by (auto simp add: less-eq-action ref-def relation-of-inject[symmetric] utp-defs)
next
 show \(\inf x y \leq x \)
 apply (auto simp add: less-eq-action inf-action ref-def csp-defs design-defs rp-defs)
 apply (subst action-of-inverse, simp add: Healthy-def)
 apply (insert relation-of-CSP[where \(x = x \)])
 apply (insert relation-of-CSP[where \(x = y \)])
 apply (simp-all add: CSP-join)
 apply (simp add: utp-defs)
 done
next
 show \(\inf x y \leq y \)
 apply (auto simp add: less-eq-action inf-action ref-def csp-defs)
 apply (subst action-of-inverse, simp add: Healthy-def)
 apply (insert relation-of-CSP[where \(x = x \)])
 apply (insert relation-of-CSP[where \(x = y \)])
 apply (simp-all add: CSP-join)
 apply (simp add: utp-defs)
 done
next
 assume \(x \leq y \) and \(x \leq z \)
 then show \(x \leq \inf y z \)
 apply (auto simp add: less-eq-action inf-action ref-def impl-def csp-defs)
 apply (erule-tac \(x = a \) in allE, erule-tac \(x = a \) in allE+)
 apply (subst (asm) action-of-inverse)
 apply (simp add: Healthy-def)
 apply (insert relation-of-CSP[where \(x = z \)])
 apply (insert relation-of-CSP[where \(x = y \)])
 apply (auto simp add: CSP-join)
 done
next
 show \(x \leq \sup x y \)
 apply (auto simp add: less-eq-action sup-action ref-def impl-def csp-defs)
 apply (subst (asm) action-of-inverse)
 apply (simp add: Healthy-def)
 apply (insert relation-of-CSP[where \(x = x \)])
apply (insert relation-of-CSP[where \(x=y\)])
apply (auto simp add: CSP-meet)
done

next

show \(y \leq \sup x y\)
apply (auto simp add: less-eq-action sup-action ref-def impl-def csp-defs)
apply (subst (asm) action-of-inverse)
apply (simp add: Healthy-def)
apply (insert relation-of-CSP[where \(x=x\)])
apply (insert relation-of-CSP[where \(x=y\)])
apply (auto simp add: CSP-meet)
done

next

assume \(y \leq x\) and \(z \leq x\)
then show \(\sup y z \leq x\)
apply (auto simp add: less-eq-action sup-action ref-def impl-def csp-defs)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=b\) in allE)
apply (subst action-of-inverse)
apply (simp add: Healthy-def)
apply (insert relation-of-CSP[where \(x=z\)])
apply (insert relation-of-CSP[where \(x=y\)])
apply (auto simp add: CSP-meet)
done

}

qed

end

lemma bot-is-action: \(R (false \vdash true) \in \{p. \ is-CSP-process p\}\)
by (auto intro: rd-is-CSP)

lemma bot-eq-true: \(R (false \vdash true) = R true\)
by (auto simp: fun-eq-iff design-defs rp-defs split: cond-splits)

instantiation action :: (ev-eq, type) bounded-lattice
begin

definition bot-action : (bot::('a, 'b) action) ≡ action-of (R(true ⊢ false))
definition top-action : (top::('a, 'b) action) ≡ action-of (R(false ⊢ true))

instance
proof
 fix \(x::('a, 'b) action\)
 { show bot ≤ x
 unfolding bot-action
 }

end
apply (auto simp add: less-action less-eq-action ref-def bot-action)
apply (subst action-of-inverse) apply (rule bot-is-action)
apply (subst bot-eq-true)
apply (subst (asm) CSP-is-rd)
apply (rule relation-of-CSP)
apply (auto simp add: csp-defs rp-defs fun-eq-iff split: cond-splits)
done

next

show ι ≤ top
apply (auto simp add: less-action less-eq-action ref-def top-action)
apply (subst (asm) action-of-inverse)
apply (simp)
apply (rule rd-is-CSP)
apply auto
apply (subst action-of-cases[where x=ι], simp-all)
apply (subst action-of-inverse, simp-all)
apply (subst CSP-is-rd[where P=y], simp-all)
apply (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)
done

qed

end

lemma relation-of-top: relation-of top = R(true ⊢ false)
apply (simp add: top-action)
apply (subst action-of-inverse)
apply (simp)
apply (rule rd-is-CSP)
apply (auto simp add: utp-defs design-defs rp-defs)
done

lemma relation-of-bot: relation-of bot = R true
apply (simp add: bot-action)
apply (subst action-of-inverse)
apply (simp add: bot-is-action[simplified], rule bot-eq-true)
done

lemma non-emptyE: assumes A ≠ {} obtains x where x : A
using assms by (auto simp add: ex-in-conv [symmetric])

lemma CSP1-Inf:
assumes *: A ≠ {}
shows (Π relation-of ' A) is CSP1 healthy
proof −
 have (Π relation-of ' A) = CSP1 (Π relation-of ' A)
 proof
 fix P
 note * then
show \((P \in \bigcup \{\{p, P p\} | P, P \in \text{relation-of } A\}) = \text{CSP1} (\lambda Aa. Aa \in \bigcup \{p, P p\} | P, P \in \text{relation-of } A)\) \(P\)
apply (intro \(\text{iffI}\))
apply (simp-all add: csp-defs)
apply (rule disj-introC, simp)
apply (erule disj-elim, simp-all)
apply (cases \(P\), simp-all)
apply (erule non-emptyE)
apply (rule-tac \(x\) = \(\text{Collect } \text{relation-of } x\) in \(\text{exI}\), simp)
apply (rule conjI)
apply (rule-tac \(x\) = \(\text{relation-of } x\) in \(\text{exI}\), simp)
apply (subst CSP-is-rd, simp add: relation-of-CSP)
apply (auto simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
done
qed

then show \((\prod \text{relation-of } A) \text{ is CSP1 healthy by } (\text{simp add: design-defs})\)
qed

lemma \(\text{CSP2-Inf}\):
assumes \(*\) \(A \neq \{\}\)
shows \((\prod \text{relation-of } A) \text{ is CSP2 healthy}\)
proof
 have \((\prod \text{relation-of } A) = \text{CSP2} (\prod \text{relation-of } A)\)
 proof
 fix \(P\)
 note \(*\) then
 show \((P \in \bigcup \{\{p, P p\} | P, P \in \text{relation-of } A\}) = \text{CSP2} (\lambda Aa. Aa \in \bigcup \{p, P p\} | P, P \in \text{relation-of } A)\) \(P\)
apply (intro \(\text{iffI}\))
apply (simp-all add: csp-defs)
apply (cases \(P\), simp-all)
apply (erule \(\text{exE}\))
apply (rule-tac \(b=b\) in \(\text{comp-intro}\), simp-all)
apply (rule-tac \(x=x\) in \(\text{exI}\), simp)
apply (erule \(\text{comp-elim}\), simp-all)
apply (erule \(\text{exE} | \text{erule conjE}+\))
apply (simp-all)
apply (rule-tac \(x=\text{Collect } Pa\) in \(\text{exI}\), simp)
apply (rule conjI)
apply (rule-tac \(x=Pa\) in \(\text{exI}\), simp)
apply (erule \(\text{Set.imageE}\), simp add: relation-of)
apply (subst CSP-is-rd, simp add: relation-of-CSP)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (auto simp add: csp-defs rp-defs prefixeq-def design-defs fun-eq-iff split: cond-splits)
apply (subgoal-tac \(b\) | \(\text{tr} := zs\), \(\text{ok} := \text{False}\)) = \(c\) | \(\text{tr} := zs\), \(\text{ok} := \text{False}\), \(\text{auto}\)
apply (subgoal-tac \(b\) | \(\text{tr} := zs\), \(\text{ok} := \text{False}\)) = \(c\) | \(\text{tr} := zs\), \(\text{ok} := \text{False}\), \(\text{auto}\)
apply (subgoal-tac \(b\) | \(\text{tr} := zs\), \(\text{ok} := \text{False}\)) = \(c\) | \(\text{tr} := zs\), \(\text{ok} := \text{False}\), \(\text{auto}\)

62
proof

(\text{shows} ∗ \text{assumes} lemma \text{R-Inf})

qed

then show (\bigcap \text{relation-of} ' A) is CSP2 healthy by \text{(simp add: design-defs)}

qed

lemma \text{R-Inf}:

assumes \(A \neq \emptyset \)

shows (\bigcap \text{relation-of} ' A) is R healthy

proof

have (\bigcap \text{relation-of} ' A) = R (\bigcap \text{relation-of} ' A)

proof

fix \(P \)

show (\(P \in \bigcup \{ \{ p. P \} \mid P. P \in \text{relation-of} ' A \} \)) = R (\lambda Aa. Aa \in \bigcup \{ \{ p. P \} \mid P. P \in \text{relation-of} ' A \}) P

apply (cases \(P \), simp-all)

apply (rule)

apply (simp-all add: csp-defs rp-defs split: cond-splits)

apply (erule exE)

apply (erule exE | erule conjE)+

apply (simp-all)

apply (erule Set.imageE, simp add: relation-of)

apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)

apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)

apply (rule-tac \(x=x \) in exI, simp)

apply (rule conjI)

apply (rule-tac \(x=\text{relation-of} x \) in exI, simp)

apply (subst CSP-is-rd, simp add: relation-of-CSP)

apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)

apply (insert ∗)

apply (erule non-emptyE)

apply (rule-tac \(x=\text{Collect (relation-of} x \) \) in exI, simp)

apply (rule conjI)

apply (rule-tac \(x=(\text{relation-of} x \) \) in exI, simp)

apply (subst CSP-is-rd, simp add: relation-of-CSP)

apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)

apply (erule exE | erule conjE)+

apply (simp-all)

apply (erule Set.imageE, simp add: relation-of)

apply (rule-tac \(x=x \) in exI, simp)

apply (rule conjI)

apply (rule-tac \(x=(\text{relation-of} xa \) \) in exI, simp)

apply (subst CSP-is-rd, simp add: relation-of-CSP)

apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)

apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
done
qed
then show (∏ relation-of ’ A) is R healthy by (simp add: design-defs)
qed

lemma CSP-Inf:
 assumes A ≠ {}
 shows is-CSP-process (∏ relation-of ’ A)
 unfolding is-CSP-process-def
 using assms CSP1-Inf CSP2-Inf R-Inf
 by auto

lemma Inf-is-action: A ≠ {} ⇒ ∏ relation-of ’ A ∈ {p. is-CSP-process p}
 by (auto dest!: CSP-Inf)

lemma CSP1-Sup: A ≠ {} ⇒ (∪ relation-of ’ A) is CSP1 healthy
 apply (auto simp add: design-defs csp-defs fun-eq-iff)
 apply (subst CSP-is-rd, simp add: relation-of-CSP)
 apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
done

lemma CSP2-Sup: A ≠ {} ⇒ (∪ relation-of ’ A) is CSP2 healthy
 apply (simp add: design-defs csp-defs fun-eq-iff)
 apply (rule allI)+
 apply (rule)
 apply (rule-tac b=b in comp-intro, simp-all)
 apply (erule comp-elim, simp-all)
 apply (rule allI)
 apply (erule-tac x=x in allE)
 apply (erule impI)
 apply (case-tac (∃ P. x = Collect P & P ∈ relation-of ’ A), simp-all)
 apply (erule cxE | erule conjE)+
 apply (simp-all)
 apply (erule Set.imageE, simp add: relation-of)
 apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
 apply (auto simp add: csp-defs design-defs rp-defs split: cond-splits)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
 apply (subgoal-tac ba[tr := tr c – tr aa, ok := False] = c[tr := tr c – tr aa, ok := False], simp-all)
ok := False, simp-all
apply (subgoal-tac ba{|tr := tr c − tr aa, ok := True} = c{|tr := tr c − tr aa, ok := True}, simp-all)
apply (subgoal-tac ba{|tr := tr c − tr aa, ok := True} = c{|tr := tr c − tr aa, ok := True}, simp-all)
done

lemma R-Sup: A ≠ {} ⇒ (\bigcup relation-of ' A) is R healthy
apply (simp add: rp-defs design-defs csp-defs fun-eq-iff)
apply (rule allI)+
apply (rule)
apply (simp split: cond-splits)
apply (case-tac wait a, simp-all)
apply (erule non-emptyE)
apply (erule-tac x = Collect (relation-of x) in allE, simp-all)
apply (case-tac relation-of x (a, b), simp-all)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule-tac x = (relation-of x) in allE, simp-all)
apply (rule conjI)
apply (rule allI)
apply (erule-tac x = x in allE)
apply (rule impl)
apply (case-tac (\exists P. x = Collect P & P ∈ relation-of ' A), simp-all)
apply (erule exE | erule conjE)+
apply (simp-all)
apply (erule Set.imageE, simp add: relation-of)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule non-emptyE)
apply (erule-tac x = Collect (relation-of x) in allE, simp-all)
apply (case-tac relation-of x (a, b), simp-all)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule-tac x = (relation-of x) in allE, simp-all)
apply (simp split: cond-splits)
apply (rule allI)
apply (rule impl)
apply (erule exE | erule conjE)+
apply (simp-all)
apply (erule Set.imageE, simp add: relation-of)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (rule allI)
apply (rule impl)
apply (erule exE | erule conjE)+
apply (simp-all)
apply (erule Set.imageE, simp add: relation-of)
apply (erule-tac x = x in allE, simp-all)
apply (case-tac relation-of xa (a(tr := [], b(tr := tr b - tr a)), simp-all)
apply (simp add: relation-of-CSP)
apply (erule-tac x = P in allE, simp-all)
done

lemma CSP-Sup: A ≠ {} ⇒ is-CSP-process (union (relation-of ' A))
unfolding is-CSP-process-def using CSP1-Sup CSP2-Sup R-Sup by auto

lemma Sup-is-action: A ≠ {} ⇒ union (relation-of ' A) ∈ {p. is-CSP-process p}
by (auto dest!: CSP-Sup)

lemma relation-of-Sup:
A ≠ {} ⇒ relation-of (action-of union (relation-of ' A)) = union (relation-of ' A)
by (auto simp add: action-of-inverse dest: Sup-is-action)

instantiation action :: (ev-eq, type) complete-lattice

begin

definition Sup-action :
(Sup (S :: ('a, 'b) action set) ≡ if S = {} then bot else action-of union (relation-of ' S))

definition Inf-action :
(Inf (S :: ('a, 'b) action set) ≡ if S = {} then top else action-of intersection (relation-of ' S))

instance

proof

fix A :: ('a, 'b) action set and z :: ('a, 'b) action

{ fix x :: ('a, 'b) action
 assume x ∈ A
 then show Inf A ≤ x
 applying (auto simp add: less-action less-eq-action Inf-action ref-def)
 applying (subst (asm) action-of-inverse)
 applying (auto intro: Inf-is-action[simplified])
 done }

 note rule1 = this

 { assume *: ∀x. x ∈ A ⇒ z ≤ x
 show z ≤ Inf A
 proof (cases A = {})
 case True
 then show ?thesis by (simp add: Inf-action)
 next
 case False
 show ?thesis
 using *
 }

66
apply (auto simp add: Inf-action)
using ⟨A ≠ {}⟩;
apply (simp add: less-eq-action Inf-action ref-def)
apply (subst (asm) action-of-inverse)
apply (subst (asm) ex-in-conv[symmetric])
apply (erule exE)
apply (auto intro: Inf-is-action[simplified])
done
qed

}{
fix x::('a, 'b) action
assume x ∈ A
then show x ≤ (Sup A)
 apply (auto simp add: less-action less-eq-action Sup-action ref-def)
 apply (subst (asm) action-of-inverse)
 apply (auto intro: Sup-is-action[simplified])
done
} note rule2 = this

{ assume ∀x. x ∈ A → x ≤ z
then show Sup A ≤ z
 apply (auto simp add: Sup-action)
 apply atomize
 apply (case_tac A = {}, simp)
 apply (insert rule2)
 apply (auto simp add: less-action less-eq-action Sup-action ref-def)
 apply (subst (asm) action-of-inverse)
 apply (auto intro: Sup-is-action[simplified])
 apply (subst (asm) action-of-inverse)
 apply (auto intro: Sup-is-action[simplified])
done
}

{ show Inf ({}::('a, 'b) action set) = top by (simp add:Inf-action) }
{ show Sup ({}::('a, 'b) action set) = bot by (simp add:Sup-action) }
qed

end

end

14 Circus variables

theory Var-list
imports Main
begin

Circus variables are represented by a stack (list) of values. They are characterized by two functions, select and update. The Circus variable type is defined as a tuple (select * update) with a list of values instead of a single
type-synonym \((\alpha, \sigma)\) var-list = (\sigma \Rightarrow \alpha\ list) * ((\alpha\ list \Rightarrow \alpha\ list) \Rightarrow \sigma \Rightarrow \sigma)

The `select` function returns the top value of the stack.

definition `select :: (\alpha, \r)\ var-list \Rightarrow \r \Rightarrow \alpha`

where `select f \equiv \lambda A. \ hd (\fst f) A`

The `increase` function pushes a new value to the top of the stack.

definition `increase :: (\alpha, \r)\ var-list \Rightarrow \alpha \Rightarrow \r \Rightarrow \r`

where `increase f \ val \equiv (\snd f) (\lambda l. (\val\# l))`

The `increase0` function pushes an arbitrary value to the top of the stack.

definition `increase0 :: (\alpha, \r)\ var-list \Rightarrow \\ r \Rightarrow \alpha`

where `increase0 f \equiv (\snd f) (\lambda l. (\SOME val. True)# l))`

The `decrease` function pops the top value of the stack.

definition `decrease :: (\alpha, \r)\ var-list \Rightarrow \\ r \Rightarrow \r`

where `decrease f \equiv (\snd f) (\lambda l. (tl l))`

The `update` function updates the top value of the stack.

definition `update :: (\alpha, \r)\ var-list \Rightarrow (\alpha \Rightarrow \alpha) \Rightarrow \r \Rightarrow \r`

where `update f \ upd \equiv (\snd f) (\lambda l. (\upd (\hd l))# (tl l))`

The `update0` function initializes the top of the stack with an arbitrary value.

definition `update0 :: (\alpha, \r)\ var-list \Rightarrow \\ r \Rightarrow \alpha`

where `update0 f \equiv (\snd f) (\lambda l. (\SOME upd. True) (\hd l)# (tl l))`

axiomatization **where** `select-increase: (select \ v (increase \ v \ a \ s)) = a`

The `VAR-LIST` function allows to retrieve a Circus variable from its name.

syntax `-VAR-LIST :: id \Rightarrow (\\alpha, \r)\ var-list \ VAR' LIST -`

translations `VAR-LIST x => (x, \ -update-name x)`

end

15 Denotational semantics of Circus actions

theory Denotational-Semantics

imports Circus-Actions Var-list

begin

In this section, we introduce the definitions of Circus actions denotational semantics. We provide the proof of well-formedness of every action. We also provide proofs concerning the monotonicity of operators over actions.
15.1 Skip

definition Skip :: ('a::ev-eq,σ) action where
 Skip ≡ action-of
 (R (true ⊢ λ(A, A'), tr A' = tr A ∧ ¬wait A' ∧ more A = more A'))

lemma Skip-is-action:
 (R (true ⊢ λ(A, A'), tr A' = tr A ∧ ¬wait A' ∧ more A = more A')) ∈ {p. is-CSP-process p}
 apply (simp)
 apply (rule rd-is-CSP)
 by auto

lemmas Skip-is-CSP = Skip-is-action[simplified]

lemma relation-of-Skip:
 relation-of Skip
 by (simp add: Skip-def action-of-inverse Skip-is-CSP)

definition CSP3 :: ('a::ev-eq,σ) alphabet-rp Healthiness-condition
 where CSP3 (P) ≡ relation-of Skip ; P

definition CSP4 :: ('a::ev-eq,σ) alphabet-rp Healthiness-condition
 where CSP4 (P) ≡ P ; relation-of Skip

lemma Skip-is-CSP3: (relation-of Skip) is CSP3 healthy
 apply (auto simp: relation-of-Skip rp-defs design-defs fun-eq-iff CSP3-def)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=b in comp-intro)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=b in comp-intro)
 apply (split cond-splits, simp-all)+
 prefer 3
 apply (split cond-splits, simp-all)+
 apply (auto simp add: prefixeq-def)
 done

lemma Skip-is-CSP4: (relation-of Skip) is CSP4 healthy
 apply (auto simp: relation-of-Skip rp-defs design-defs fun-eq-iff CSP4-def)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=b in comp-intro)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=b in comp-intro)
 apply (split cond-splits, simp-all)+
 prefer 3
 apply (split cond-splits, simp-all)+
 apply (auto simp add: prefixeq-def)
 done
lemma Skip-comp-absorb: (relation-of Skip ;; relation-of Skip) = relation-of Skip
apply (auto simp: relation-of-Skip fun-eq-iff rp-defs true-def design-defs)
apply (clarsimp split: cond-splits)+
apply (case-tac ok aa, simp-all)
apply (erule disjE)+
apply (clarsimp simp: prefixeq-def)
apply (rule_tac b=a in comp-intro)
apply (clarsimp simp: prefixeq-def)
apply (rule_tac b=a in comp-intro)
apply (clarsimp simp: prefixeq-def)
apply (erule disjE)+
done

15.2 Stop

definition Stop :: (′ϑ::ev-eq,′σ) action
where Stop ≡ action-of (R (true ⊢ λ(A, A'). tr A' = tr A ∧ wait A'))

lemma Stop-is-action:
(R (true ⊢ λ(A, A'). tr A' = tr A ∧ wait A')) ∈ {p. is-CSP-process p}
apply (simp)
apply (rule rd-is-CSP)
by auto

lemmas Stop-is-CSP = Stop-is-action[simplified]

lemma relation-of-Stop:
relation-of Stop = (R (true ⊢ λ(A, A'). tr A' = tr A ∧ wait A'))
by (simp add: Stop-def action-of-inverse Stop-is-CSP)

lemma Stop-is-CSP3: (relation-of Stop) is CSP3 healthy
apply (auto simp: relation-of-Stop relation-of-Skip rp-defs design-defs fun-eq-iff CSP3-def)
apply (rule_tac b=a in comp-intro)
apply (split cond-splits, auto)
apply (split cond-splits)+
apply (simp-all)
apply (case-tac ok aa, simp-all)
apply (case-tac tr aa ≤ tr ba, simp-all)
apply (case-tac ok ba, simp-all)
apply (case-tac tr ba ≤ tr c, simp-all)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (split cond-splits)+
apply (simp-all add: true-def)
apply (erule disjE)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (auto simp add: prefixeq-def)
done

lemma Stop-is-CSP₄ : (relation-of Stop) is CSP₄ healthy
apply (auto simp: relation-of-Stop relation-of-Skip rp-defs design-defs fun-eq-iff
CSP₄-def)
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all)+
apply (case-tac ok aa, simp-all)
apply (case-tac tr aa ≤ tr ba, simp-all)
apply (case-tac ok ba, simp-all)
apply (case-tac tr ba ≤ tr c, simp-all)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (split cond-splits)+
apply (simp-all add: true-def)
apply (erule disjE)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (auto simp add: prefixeq-def)
done
15.3 Chaos

definition Chaos :: ('\eta::ev-eq,'\sigma) action
where Chaos \equiv \text{action-of } (R(\text{false} \vdash \text{true}))

lemma Chaos-is-action: (R(\text{false} \vdash \text{true})) \in \{\text{p. is-CSP-process } p\}
apply (simp)
apply (rule rd-is-CSP)
by auto

lemmas Chaos-is-CSP = Chaos-is-action[simplified]

lemma relation-of-Chaos: relation-of Chaos = (R(\text{false} \vdash \text{true}))
by (simp add: Chaos-def action-of-inverse Chaos-is-CSP)

15.4 State update actions

definition Pre :: '\sigma relation \Rightarrow '\sigma predicate
where Pre sc \equiv \lambda A. \exists A'. sc (A, A')

definition state-update-before :: '\sigma relation \Rightarrow ('\eta::ev-eq,'\sigma) action \Rightarrow ('\eta,'\sigma) action
where state-update-before sc Ac = \text{action-of } (R ((\lambda(A, A'). (Pre sc) (more A)) \vdash \\
(\lambda(A, A'). sc (more A, more A') & \neg \text{wait } A' & \text{tr } A = \text{tr } A')))

lemma state-update-before-is-action:
(R ((\lambda(A, A'). (Pre sc) (more A)) \vdash \\
(\lambda(A, A'). sc (more A, more A') & \neg \text{wait } A' & \text{tr } A = \text{tr } A'))) ; ; relation-of Ac)
apply (simp)
apply (rule seq-CSP)
apply (rule rd-is-CSP1)
apply (auto simp: R-idem2 Healthy-def relation-of-CSP)
done

lemmas state-update-before-is-CSP = state-update-before-is-action[simplified]

lemma relation-of-state-update-before:
relation-of (state-update-before sc Ac) = (R ((\lambda(A, A'). (Pre sc) (more A)) \vdash \\
(\lambda(A, A'). sc (more A, more A') & \neg \text{wait } A' & \text{tr } A = \text{tr } A'))) ; ; relation-of Ac)
by (simp add: state-update-before-def action-of-inverse state-update-before-is-CSP)

lemma mono-state-update-before: mono (state-update-before sc)
by (auto simp: mono-def less-eq-action ref-def relation-of-state-update-before design-defs rp-defs fun-eq-iff
split: cond-splits dest: relation-of-spec-f-f[simplified]
relation-of-spec-t-f[simplified])
lemma state-update-before-is-CSP3: relation-of (state-update-before sc Ac) is CSP3 healthy
apply (auto simp: relation-of-state-update-before relation-of-Skip rp-defs design-defs fun-eq-iff CSP3-def)
apply (rule-tac b=aa in comp-intro)
apply (split cond-splits, auto)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro)
apply (split cond-splits, simp-all)+
apply (case-tac ok aa, simp-all)
apply (case-tac tr aa ≤ tr ab, simp-all)
apply (case-tac ok ab, simp-all)
apply (case-tac tr ab ≤ tr bb, simp-all)
apply (rule disjI)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (rule-tac b=bb in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule disjI)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (rule-tac b=bb in comp-intro)
apply (split cond-splits, simp-all)+
apply (simp-all add: true-def)
apply (erule disjE)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (auto simp add: prefixeq-def)
done

lemma state-update-before-is-CSP4:
 assumes A : relation-of Ac is CSP4 healthy
 shows relation-of (state-update-before sc Ac) is CSP4 healthy
apply (auto simp: relation-of-state-update-before relation-of-Skip rp-defs design-defs fun-eq-iff CSP4-def)
apply (rule-tac b=c in comp-intro)
apply (rule-tac b=ba in comp-intro, simp-all)
apply (split cond-splits, simp-all)
apply (rule-tac b=bb in comp-intro, simp-all)
apply (subst A[simplified design-defs rp-defs CSP4-def relation-of-Skip])
apply (auto simp: rp-defs)
done

definition state-update-after :: 's relation ⇒ ('θ::ev-eq,'σ) action ⇒ ('θ,'σ) action
 where state-update-after sc Ac = action-of(relation-of Ac ; ; R (true ⊢ (λ(A, A').

73
lemma state-update-after-is-action:
(relation-of Ac ; ; R (true ⊢ (A, A'). sc (more A, more A') & ¬wait A' & tr A = tr A')) ∈ {p. is-CSP-process p}
apply (simp)
apply (rule seq-CSP)
apply (auto simp: relation-of-CSP[simplified is-CSP-process-def])
apply (rule rd-is-CSP, auto)
done

lemmas state-update-after-is-CSP = state-update-after-is-action[simplified]

lemma relation-of-state-update-after:
relation-of (state-update-after sc Ac) = (relation-of Ac ; ; R (true ⊢ (A, A'). sc (more A, more A') & ¬wait A' & tr A = tr A'))
by (simp add: state-update-after-def action-of-inverse state-update-after-is-CSP)

lemma mono-state-update-after: mono (state-update-after sc)
by (auto simp: mono-def less-eq-action ref-def relation-of-state-update-after design-defs rp-defs fun-eq-iff
 split: cond-splits dest: relation-of-spec-f-f[simplified]
 relation-of-spec-t-f[simplified])

lemma state-update-after-is-CSP3:
 assumes A : relation-of Ac is CSP3 healthy
 shows relation-of (state-update-after sc Ac) is CSP3 healthy
apply (auto simp: relation-of-state-update-after relation-of-Skip rp-defs design-defs fun-eq-iff CSP3-def
 split: cond-splits dest: relation-of-spec-f-f[simplified]
 relation-of-spec-t-f[simplified])
apply (rule-tac b=aa in comp-intro)
apply (split cond-splits, auto)
apply (rule-tac b=ba in comp-intro, simp-all)
apply (subst A[simplified design-defs rp-defs CSP3-def relation-of-Skip])
apply (auto simp: rp-defs)
done

lemma state-update-after-is-CSP4: relation-of (state-update-after sc Ac) is CSP4 healthy
apply (auto simp: relation-of-state-update-after relation-of-Skip rp-defs design-defs fun-eq-iff CSP4-def)
apply (rule-tac b=c in comp-intro)
apply (rule-tac b=ba in comp-intro, simp-all)
apply (split cond-splits, simp-all+)
apply (rule-tac b=bb in comp-intro, simp-all+)
apply (split cond-splits, simp-all+)
apply (case-tac ok bb, simp-all)
apply (case-tac tr bb ≤ tr c, simp-all)
apply (case-tac ok ca, simp-all)
apply (case-tac tr ca ≤ tr c, simp-all)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (erule-tac x = zs@zs in allE, simp)
apply (rule-tac b = bb in comp-intro, simp-all)
apply (split cond-splits, simp-all add: true-def)+
apply (case-tac ok ca, simp-all)
apply (case-tac tr ca ≤ tr c, simp-all)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (erule-tac x = zs@zs in allE, simp)
apply (rule-tac b = bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)
apply (case-tac tr bb ≤ tr c, simp-all)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x = zs@zs in allE, simp)
apply (auto simp add: prefixeq-def)
done

15.5 Sequential composition

definition Seq :: (′ϑ :: ev-eq, ′σ :: action ⇒ (′ϑ, ′σ) action ⇒ (′ϑ, ′σ) action) (infixl ′; ′ 24)
where P ′; ′ Q ≡ action-of (relation-of P ′; ′ relation-of Q)

lemma Seq-is-action: (relation-of P ′; ′ relation-of Q) ∈ {p. is-CSP-process p}
apply (simp)
apply (rule seq-CSP[OF relation-of-CSP[THEN CSP-is-CSP1] relation-of-CSP[THEN CSP-is-R] relation-of-CSP])
done

lemmas Seq-is-CSP = Seq-is-action[simplified]

lemma relation-of-Seq: relation-of (P ′; ′ Q) = (relation-of P ′; ′ relation-of Q)
by (simp add: Seq-def action-of-inverse Seq-is-CSP)

lemma mono-Seq: mono (op ′; ′ P)
by (auto simp: mono-def less-eq-action ref-def relation-of-Seq)

lemma CSP3-imp-left-Skip:
 assumes A: relation-of P is CSP3 healthy
 shows (Skip ′; ′ P) = P
apply (subst relation-of-inject[symmetric])
apply (simp add: relation-of-Seq A[simplified design-defs CSP3-def, symmetric])
done
lemma \textit{CSP4-imp-right-Skip}:
\textbf{assumes} A: relation-of P is CSP4 healthy
\textbf{shows} (P ; Skip) = P
\textbf{apply} (subst relation-of-inject\{symmetric\})
\textbf{apply} (simp add: relation-of-Seq A\{simplified design-defs CSP4-def, symmetric\})
\textbf{done}

lemma \textit{Seq-assoc}: (A ; (B ; C)) = (A ; B ; C)
\textbf{by} (auto simp: relation-of-inject\{symmetric\} fun-eq-iff relation-of-Seq rp-defs design-defs)

lemma \textit{Skip-absorb}: (Skip ; Skip) = Skip
\textbf{by} (auto simp: relation-of-inject\{symmetric\} relation-of-Seq)

15.6 Internal choice

\textbf{definition} \textit{Ndet} :: (\'\vartheta::ev-eq, \'\sigma) action \Rightarrow (\'\vartheta,\'\sigma) action \Rightarrow (\'\vartheta,\'\sigma) action (infixl \& 18)
\textbf{where} P \& Q \equiv action-of ((relation-of P) \lor (relation-of Q))

lemma \textit{Ndet-is-action}: ((relation-of P) \lor (relation-of Q)) \in \{p. is-CSP-process p\}
\textbf{apply} (simp)
\textbf{apply} (rule disj-CSP)
\textbf{apply} (simp-all add: relation-of-CSP)
\textbf{done}

lemmas \textit{Ndet-is-CSP} = Ndet-is-action\{simplified\}

lemma \textit{relation-of-Ndet}: relation-of (P \& Q) = ((relation-of P) \lor (relation-of Q))
\textbf{by} (simp add: Ndet-def action-of-inverse Ndet-is-CSP)

lemma \textit{mono-Ndet}: mono (op \& P)
\textbf{by} (auto simp: mono-def less-eq-action ref-def relation-of-Ndet)

15.7 External choice

\textbf{definition} \textit{Det} :: (\'\vartheta::ev-eq,\'\sigma) action \Rightarrow (\'\vartheta,\'\sigma) action \Rightarrow (\'\vartheta,\'\sigma) action (infixl + 18)
\textbf{where} P + Q \equiv action-of (R(\neg((relation-of P)^I_j) \land \neg((relation-of Q)^I_j) \vdash (((relation-of P)^I_j \land ((relation-of Q)^I_j))
\lor \lambda (A, A'). tr A = tr A' \land wait A' \triangleright ((relation-of P)^I_j \lor ((relation-of Q)^I_j))))))

\textbf{notation(xsymbol)}
\textit{Det} (infixl \& 18)

\textbf{lemma} \textit{Det-is-action}:
(R(\neg((relation-of P)^I_j) \land \neg((relation-of Q)^I_j) \vdash (((relation-of P)^I_j \land ((relation-of Q)^I_j))
\lor \lambda (A, A'). tr A = tr A' \land wait A' \triangleright ((relation-of P)^I_j \lor ((relation-of Q)^I_j)))))) \in \{p. is-CSP-process p\}
apply (simp add: spec-def)
apply (rule rd-is-CSP)
apply (auto)
done

lemmas Det-is-CSP = Det-is-action[simplified]

lemma relation-of-Det:
relation-of (P □ Q) = (R(¬((relation-of P)↑f)∧¬((relation-of Q)↑f)) ⊢
((((relation-of P)↑f ∨ ((relation-of Q)↑f))) ↝ χ(A, A'). tr A = tr A' ∧ wait A' ▷
((relation-of P)↑f ∨ ((relation-of Q)↑f))))
apply (unfold Det-def)
apply (rule action-of-inverse)
apply (rule Det-is-action)
done

lemma mono-Det: mono (op [+] P)
by (auto simp: mono-def less-eq-action ref-def relation-of-Det design-defs rp-defs
fun-eq-iff
 split: cond-splits dest:
relation-of-spec-f-f[simplified]
relation-of-spec-t-f[simplified])

15.8 Reactive design assignment

definition
rd-assign s = action-of (R (true ⊢ λ(A, A'). ref A' = ref A ∧ tr A' = tr A ∧ ¬wait
A' ∧ more A' = s))

lemma rd-assign-is-action:
(R (true ⊢ λ(A, A'). ref A' = ref A ∧ tr A' = tr A ∧ ¬wait A' ∧ more A' = s)) ∈ {p. is-CSP-process p}
apply (auto simp:)
apply (rule rd-is-CSP)
by auto

lemmas rd-assign-is-CSP = rd-assign-is-action[simplified]

lemma relation-of-rd-assign:
relation-of (rd-assign s) =
(R (true ⊢ λ(A, A'). ref A' = ref A ∧ tr A' = tr A ∧ ¬wait A' ∧
more A' = s))
by (simp add: rd-assign-def action-of-inverse rd-assign-is-CSP)

15.9 Local state external choice

definition
Loc::σ ⇒ ('θ::ev-eq,σ) action ⇒ σ ⇒ ('θ,σ) action ⇒ ('θ,σ) action
 ('(())loc - • - ') ⊢ ('(())loc - • - '))

77
where \((\text{loc } s1 \bullet P) \boxplus (\text{loc } s2 \bullet Q) \equiv (\text{rd-assign } s1)' \land P \boxplus (\text{rd-assign } s2)' \land Q\)

15.10 Schema expression

definition Schema :: \(\sigma\) relation \(\Rightarrow (\emptyset :: \text{ev-eq}, \sigma)\) action where
Schema sc \equiv action-of(R \((\lambda(A, A'). \text{Pre sc}) \text{ (more } A)) \vdash
(\lambda(A, A'). sc \text{ (more } A, \text{ more } A') \land \neg \text{wait } A' \land \text{tr } A = \text{tr } A'))

lemma Schema-is-action:
(R \((\lambda(A, A'). \text{Pre sc}) \text{ (more } A)) \vdash
(\lambda(A, A'). sc \text{ (more } A, \text{ more } A') \land \neg \text{wait } A' \land \text{tr } A = \text{tr } A')) \in \{p. is-CSP-process p\}
apply (simp)
apply (rule rd-is-CSP)
apply (auto)
done

lemmas Schema-is-CSP = schema-is-action[simplified]

lemma relation-of-Schema:
relation-of \((\text{Schema sc}) = (R \((\lambda(A, A'). \text{Pre sc}) \text{ (more } A)) \vdash
(\lambda(A, A'). sc \text{ (more } A, \text{ more } A') \land \neg \text{wait } A' \land \text{tr } A = \text{tr } A'))\)
by (simp add: Schema-def action-of-inverse Schema-is-CSP)

lemma Schema-is-state-update-before: Schema u = state-update-before u Skip
apply (subst relation-of-inject[symmetric])
apply (auto simp: relation-of-Schema relation-of-state-update-before relation-of-Skip
rp-defs fun-eq-iff
 design-defs)
apply (split cond-splits, simp-all)
apply (rule comp-intro)
apply (split cond-splits, simp-all)+
apply (rule comp-intro)
apply (split cond-splits, simp-all)+
prefer 3
apply (split cond-splits, simp-all)+
apply (auto simp: prefixeq-def)
done

15.11 Parallel composition

type-synonym \(\sigma\) local-state = \((\sigma \times (\sigma \Rightarrow \sigma \Rightarrow \sigma))\)

fun MergeSt :: \(\sigma\) local-state \Rightarrow \sigma local-state \Rightarrow (\emptyset, \sigma) relation-rp where
MergeSt (s1, s1') (s2, s2') = ((\lambda(S, S') \text{ (more } S) = \text{more } S');
(\lambda(S::(\emptyset, \sigma) alphabet-rp, S') \text{ (more } S) = \text{more } S'))

definition listCons ::\(\emptyset\) \Rightarrow \(\emptyset\) list list \Rightarrow \(\emptyset\) list list (- # # -) where
a ## l = ((\text{map (Cons a)) l)
fun ParMergel :: 'a::ev eq list ⇒ 'a list ⇒ 'a set ⇒ 'a list list where
ParMergel [] [] cs = [[]]
| ParMergel [] (b #! tr2) cs = (if (filter-chan-set b cs) then []
else (b #! (ParMergel [] tr2 cs)))
| ParMergel (a #! tr1) [] cs = (if (filter-chan-set a cs) then []
else (a #! (ParMergel tr1 [] cs)))
| ParMergel (a #! tr1) (b #! tr2) cs =
 (if (filter-chan-set a cs)
 then (if (ev-eq a b)
 then (a #! (ParMergel tr1 tr2 cs))
 else (b #! (ParMergel (a #! tr1) tr2 cs))))
 else (if (filter-chan-set b cs)
 then (a #! (ParMergel tr1 (b #! tr2) cs))
 else (a #! (ParMergel tr1 (b #! tr2) cs))
 @ (b #! (ParMergel (a #! tr1) tr2 cs)))

definition ParMergel::'a::ev eq list ⇒ 'a list ⇒ 'a set ⇒ 'a list list where
ParMergel tr1 tr2 cs = set (ParMergel tr1 tr2 cs)

lemma set-Cons1: tr1 ∈ set l ⇒ a # tr1 ∈ op # a ' set l
by (auto)

lemma tr-in-set-eq: (tr1 ∈ op # b ' set l) = (tr1 ≠ [] ∧ hd tr1 = b ∧ tl tr1 ∈ set l)
by (induct l) auto

definition M-par::('a::ev eq, 'a) alpha-rp-scheme ⇒ ('a ⇒ 'a ⇒ 'a)
⇒ ('a, 'a) alpha-rp-scheme ⇒ ('a ⇒ 'a ⇒ 'a)
⇒ ('a set ⇒ ('a, 'a) relation-rp where
M-par s1 x1 s2 x2 cs =
((λ(S, S'). ((diff-tr s1 S) (diff-tr s2 S) cs &
ev-eq (tr-filter (tr s1) cs) (tr-filter (tr s2) cs))) ∧
((λ(S, S'). (wait s1 ∨ wait s2) ∧
 ref S' ⊆ (((ref s1)∪(ref s2))∩cs)∪(((ref s1)∩(ref s2)−cs))))
 @ wait o snd) &
((λ(S, S'). (~wait s1 ∨ ~wait s2)) ∧ MergeSt ((more s1), x1) ((more s2), x2)))

definition Par::('a::ev eq, 'a) action ⇒
(σ ⇒ σ ⇒ 'a) ⇒ 'a set ⇒ ('a ⇒ 'a ⇒ σ) ⇒
(σ, 'a) action ⇒ ('a, 'a) action (· [], [] , [] , [] , [] , []) where
A1 = (ns1 | cs | ns2) A2 = (action-of (R ((λ(S, S'). tr1 tr2. ((relation-of A1)f :: (λ (S, S'). tr1 = (tr s1)) (S, S')
∧ (spec False (wait s1) (relation-of A2)) :: (λ (S, S'). tr2 = (tr s2)) (S, S')
∧ ((tr-filter tr1 cs) = (tr-filter tr2 cs))) ∧

79
\[\neg (\exists \: tr1 \: tr2. \:\{(\lambda (S, -). \: tr1 = (tr \: S)) (S, S')\} \land ((\text{relation-of-} A2)^{\prime}_f \: \{(\lambda (S, S'). \: tr2 = (tr \: S)) (S, S')\} \land ((\text{tr-filter} \: tr1 \: cs) = (\text{tr-filter} \: tr2 \: cs))))) \rhd \\
\\{(\lambda (S, S'). (\exists \: s1 \: s2. \:\{(\lambda (A, A'). \:\text{(relation-of-} A1)^{\prime}_f (A, s1) \\land ((\text{relation-of-} A2)^{\prime}_f (A, s2))\}; \: \text{M-par} \: s1 \: ns1 \: s2 \: ns2 \: cs) (S, S')))))\} \in \{p. \text{is-CSP-process} \: p\} \\
\text{apply (simp)} \\
\text{apply (rule rd-is-CSP)} \\
\text{apply (blast)} \\
\text{done} \\

\text{lemmas Par-is-CSP = Par-is-action[simplified]} \\

\text{lemma relation-of-Par:} \\
\text{relation-of} \:\{(A1 \: [\| \: ns1 \: | \: cs \: | \: ns2 \:] \: A2\} = (R \:\{(\lambda (S, S')\}. \:\neg (\exists \: tr1 \: tr2. \:\{(\text{relation-of} \: A1)^{\prime}_f \; ; \; (\lambda (S, S'). \: tr1 = (tr \: S)) (S, S')\} \land ((\text{spec} \: \text{False} \: (\text{wait} \: S) \:\{(\text{relation-of} \: A2) ; ; (\lambda (S, S'). \: tr2 = (tr \: S)) (S, S')\} \land ((\text{tr-filter} \: tr1 \: cs) = (\text{tr-filter} \: tr2 \: cs))))) \rhd \\
\\{(\exists \: tr1 \: tr2. \:\{(\text{spec} \: \text{False} \: (\text{wait} \: S) \:\{(\text{relation-of} \: A1); ; (\lambda (S, -). \: tr1 = (tr \: S)) (S, S')\} \land ((\text{tr-filter} \: tr1 \: cs) = (\text{tr-filter} \: tr2 \: cs))))) \rhd \\
\\{(\lambda (S, S'). (\exists \: s1 \: s2. \:\{(\lambda (A, A'). \:\text{(relation-of} \: A1)^{\prime}_f (A, s1) \\land ((\text{relation-of} \: A2)^{\prime}_f (A, s2))\}; \: \text{M-par} \: s1 \: ns1 \: s2 \: ns2 \: cs) (S, S')))))\} \in \{p. \text{is-CSP-process} \: p\} \\
\text{apply (unfold Par-def)} \\
\text{apply (rule action-of-inverse)} \\
\text{apply (rule Par-is-action)} \\
\text{done} \\

\text{lemma mono-Par:} \:\{(\lambda Q. \: P \: [\| ns1 \: | cs \: | ns2 \:] \: Q\} \\text{apply (auto simp: mono-def less-eq-action ref-def relation-of-Par design-defs fun-eq-iff rp-defs split: cond-splits) } \\
\text{apply (auto simp: rp-defs dest: relation-of-spec-f-f[simplified] relation-of-spec-t-f[simplified]) } \\
\text{apply (erule_tac x \: \text{tr} \: \text{ba} \: in allE, auto) } \\
\text{apply (erule notE) } \\
\text{apply (auto dest: relation-of-spec-f-f relation-of-spec-t-f) } \\
\text{done} \\

80
15.12 Local parallel block

definition

\[
\text{ParLoc} ::= \sigma \Rightarrow (\vartheta \Rightarrow \text{'ev-eq}, \text{'set} \Rightarrow (\sigma \Rightarrow \text{'set}) \Rightarrow (\vartheta, \sigma) \Rightarrow (\vartheta, \sigma) \Rightarrow (\vartheta, \sigma)
\]

where

\[
\vartheta ::= \begin{cases}
\text{par - \bullet - \bullet - \bullet} & J \\
\text{par - \bullet - \bullet - \bullet} & K
\end{cases}
\]

15.13 Assignment

definition

\[
\text{ASSIGN} ::= (\vartheta \Rightarrow \text{'set} \Rightarrow (\sigma \Rightarrow \text{'set}) \Rightarrow (\vartheta, \sigma) \Rightarrow (\vartheta, \sigma) \Rightarrow (\vartheta, \sigma)
\]

syntax

\[
\text{-assign} ::= \text{id} \Rightarrow (\vartheta, \sigma) \Rightarrow (\sigma \Rightarrow \vartheta) \Rightarrow (\vartheta, \sigma) \Rightarrow (\vartheta, \sigma) \Rightarrow (\vartheta, \sigma)
\]

translations

\[
\text{translations} \quad \text{y ' ::= ' vv} = \text{CONST ASSIGN (VAR y) vv}
\]

lemma

Assign-is-action:

\[
(\text{ASSIGN} x e) = \text{action-of} \quad \begin{cases}
\text{R (true \Rightarrow (\lambda (S, S'), tr S' = tr S \land \neg \text{wait S'} \land (more S' = (update x (\lambda. (e (more S)))) (more S))))} \\
\text{in \{p. is-CSP-process p\}}
\end{cases}
\]

lemmas

Assign-is-CSP = Assign-is-action[simplified]

lemma

relation-of-Assign:

\[
\text{relation-of \ (ASSIGN} x e) = \text{action-of-inverse Assign-is-CSP}
\]

lemma

Assign-is-state-update-before:

\[
(\text{ASSIGN} x e = \text{state-update-before} (\lambda (s, s') \cdot s' = (update x (\lambda. (e s)) s)) \text{ Skip}
\]

lemma

Assign-is-state-update-before:

\[
(\text{ASSIGN} x e = \text{state-update-before} (\lambda (s, s') \cdot s' = (update x (\lambda. (e s)) s)) \text{ Skip}
\]

apply

(split cond-splits, simp-all)+

apply (rule-tac b=b in comp-intro)

apply (split cond-splits, simp-all)+

apply (rule-tac b=b in comp-intro)

apply (split cond-splits, simp-all)+

prefer 3

apply (split cond-splits, simp-all)+

81
apply (auto simp add: prefixeq-def)
done

15.14 Variable scope

definition Var::('v, 'σ) var-list ⇒ ('θ, 'σ) action ⇒ ('θ::ev-eq,'σ) action where
Var v A ≡ action-of{
 (R(true ⊢ (λ (A, A'). ∃ a. tr A' = tr A ∧ ¬wait A' ∧ more A' = (increase v a (more A)))));
 (relation-of A;;
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A)))))))
}
syntax -var::idt ⇒ ('θ, 'σ) action ⇒ ('θ, 'σ) action (var - • - [1000] 999)
translations var y • Act => CONST Var (VAR-LIST y) Act

lemma Var-is-action:
((R(true ⊢ (λ (A, A'). ∃ a. tr A' = tr A ∧ ¬wait A' ∧ more A' = (increase v a (more A)))));
relation-of A;;
(R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A))))))) ∈ {p. is-CSP-process p}
apply (simp)
apply (rule seq-CSP)
pref 3
apply (rule seq-CSP)
apply (auto simp: relation-of-CSP1 relation-of-R)
apply (rule rd-is-CSP)
apply (auto simp: csp-defs rp-defs design-defs fun-eq-iff prefixeq-def increase-def decrease-def
split: cond-splits)
done

lemmas Var-is-CSP = Var-is-action[simplified]

lemma relation-of-Var:
relation-of (Var v A) =
((R(true ⊢ (λ (A, A'). ∃ a. tr A' = tr A ∧ ¬wait A' ∧ more A' = (increase v a (more A)))));
relation-of A;;
(R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A)))))))
apply (simp only: Var-def)
apply (rule action-of-inverse)
apply (rule Var-is-action)
done

lemma mono-Var : mono (Var x)

82
by (auto simp: mono-def less-eq-action ref-def relation-of-Var)

definition Let=::('v, 'σ) var-list => ('σ, 'σ) action => ('σ::eq,'σ) action where
 Let v A ≡ action-of((relation-of A; ;
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A)))))))

syntax -let:idt => ('σ, 'σ) action => ('σ, 'σ) action (let - • - [1000] 999)
translations let y • Act => CONST Let (VAR-LIST y) Act

lemma Let-is-action:
 (relation-of A; ;
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A))))))) ∈ {p. is-CSP-process p}
 apply (simp)
 apply (rule seq-CSP)
 apply (auto simp: relation-of-CSP1 relation-of-R)
 apply (rule rd-is-CSP)
 apply (auto)
 done

lemmas Let-is-CSP = Let-is-action[simplified]

lemma relation-of-Let:
 relation-of (Let v A) =
 (relation-of A; ;
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A)))))))
 by (simp add: Let-def action-of-inverse Let-is-CSP)

lemma mono-Let : mono (Let x)
 by (auto simp: mono-def less-eq-action ref-def relation-of-Let)

lemma Var-is-state-update-before: Var v A = state-update-before (λ (s, s'). ∃ a. s' = increase v a s) (Let v A)
 apply (subst relation-of-inject[symmetric])
 fun-eq-iff)
 apply (auto simp: rp-defs fun-eq-iff Pre-def design-defs)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=ab in comp-intro)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=bb in comp-intro, simp-all)
 apply (split cond-splits, simp-all)+
 apply (rule-tac b=ab in comp-intro)
 apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+ defer
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (case-tac ∃A′ a. A′ = increase v a (alpha-rp.more aa), simp-all add: true-def)
apply (erule-tac x=increase v a (alpha-rp.more aa) in allE)
apply (erule-tac x=a in allE, simp)
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
done

lemma Let-is-state-update-after: Let v A = state-update-after (∆s (s, s′). s′ = decrease v s) A
apply (subst relation-of-inject[symmetric])
apply (auto simp: relation-of-Var relation-of-state-update-after relation-of-Skip
fun-eq-iff)
apply (auto simp: rp-defs fun-eq-iff Pre-def design-defs)
apply (auto split: cond-splits)
done

15.15 Guarded action

definition Guard::σ predicate ⇒ ('θ::ev-eq, 'σ) action ⇒ ('θ, 'σ) action (- 'κ' -)
where g 'κ' P ≡ action-of(R (((g o more o fst) → ¬ ((relation-of P)'f)) ⊢
(((g o more o fst) ∧ ((relation-of P)'f)) ∨

84
\((- (g \circ \text{more} \circ \text{fst}) \wedge (\lambda (A, A'). \text{tr } A' = \text{tr } A \wedge \text{wait } A'))))\)

lemma Guard-is-action:
\((R (((g \circ \text{more} \circ \text{fst}) \rightarrow \neg ((\text{relation-of } P)^f)) \vdash ((g \circ \text{more} \circ \text{fst}) \wedge ((\text{relation-of } P)^f)) \vee ((\neg (g \circ \text{more} \circ \text{fst})) \wedge (\lambda (A, A'). \text{tr } A' = \text{tr } A \wedge \text{wait } A'))) \in \{p. \text{is-CSP-process } p\}\)

by (auto simp add: spec-def intro rd-is-CSP)

lemmas Guard-is-CSP = Guard-is-action[simplified]

lemma relation-of-Guard:
\(\text{relation-of } (g \circ \cdot) P = (R ((g \circ \text{more} \circ \text{fst}) \rightarrow \neg ((\text{relation-of } P)^f)) \vdash ((g \circ \text{more} \circ \text{fst}) \wedge ((\text{relation-of } P)^f)) \vee ((\neg (g \circ \text{more} \circ \text{fst})) \wedge (\lambda (A, A'). \text{tr } A' = \text{tr } A \wedge \text{wait } A'))))\)

apply (unfold Guard-def)
apply (subst action-of-inverse)
apply (simp-all only: Guard-is-action)
done

lemma mono-Guard : mono (Guard g)
apply (auto simp: mono-def less-eq-action ref-def rp-defs design-defs relation-of-Guard

split: cond-splits)
apply (auto dest: relation-of-spec-f-f relation-of-spec-t-f)
done

lemma false-Guard: false `\&` P = Stop
apply (subst relation-of-inject[symmetric])
apply (subst relation-of-Stop)
apply (subst relation-of-Guard)
apply (simp add: fun-eq-iff utp-defs csp-defs design-defs rp-defs)
done

lemma false-Guard1: \(\wedge a b. g (\alpha-rp.\text{more} a) = \text{False} \implies \text{(relation-of } (g \circ \cdot) P) (a, b) = \text{(relation-of Stop) } (a, b)\)
apply (subst relation-of-Guard)
apply (subst relation-of-Stop)
apply (auto simp: fun-eq-iff csp-defs design-defs rp-defs split: cond-splits)
done

lemma true-Guard: true `\&` P = P
apply (subst relation-of-inject[symmetric])
apply (subst relation-of-Guard)
apply (subst CSP-is-rd[OF relation-of-CSP]) back back
apply (simp add: fun-eq-iff utp-defs csp-defs design-defs rp-defs)
done

lemma true-Guard1: \(\wedge a b. g (\alpha-rp.\text{more} a) = \text{True} \implies \)

85
\[(\text{relation-of } (g \ 'c' \ P)) \ (a, b) = (\text{relation-of } P) \ (a, b)\]

apply (subst \text{relation-of-Guard})
apply (subst \text{CSP-is-rd[OF relation-of-CSP]}) back back
apply (auto simp: \text{fun-eq-iff csp-defs design-defs rp-defs split: cond-splits})
done

lemma \text{Guard-is-state-update-before}: \(g \ 'c' \ P = \text{state-update-before} \ (\lambda \ (s, s') . g s) \ P \)
apply (subst \text{relation-of-inject[symmetric]})
apply (auto simp: \text{relation-of-Guard relation-of-state-update-before relation-of-Skip \ rf-defs fun-eq-iff})
apply (rule_tac \text{b}=a in \text{comp-intro})
apply (split \text{cond-splits}, simp-all)+
apply (subst \text{CSP-is-rd})
apply (simp-all add: \text{relation-of-CSP rf-defs design-defs fun-eq-iff})
apply (split \text{cond-splits}, simp-all)+
apply (auto)
apply (subst (asm) \text{CSP-is-rd})
apply (simp-all add: \text{relation-of-CSP rf-defs design-defs fun-eq-iff})
apply (split \text{cond-splits}, simp-all)+
apply (auto)
apply (rule disjI1) defer
apply (case-tac \text{g} (\text{alpha-rp.more aa}), simp-all)
apply (rule)+
apply (simp add: impl-def) defer
oops

15.16 Prefix action
definition \text{do where} \(\text{do e } \equiv (\lambda(A, A'). \ tr A = tr A' \land (e \ (\text{more } A)) \notin (\text{ref } A')) \circ\text{wait} \circ\text{snd} \circ (\lambda(A, A'). \ tr A' = (tr A @[(e \ (\text{more } A)])]) \)
definition \text{do-I:('}\sigma\Rightarrow\emptyset\text{') } \Rightarrow \emptyset \text{ set } \Rightarrow (\emptyset, \ '\sigma') \text{ relation-rp}
where \text{do-I c S } \equiv (\lambda(A, A'). \ tr A = tr A' \land S \cap (\text{ref } A') = \{\})
\(<\text{wait o snd}>\)
\((\lambda(A, A').\text{hd}\ (\text{tr}\ A' - \text{tr}\ A) \in S \& (\text{c (more}\ A) = (\text{last}\ (\text{tr}\ A')))))\)

definition
\(i\text{Prefix}:('\sigma \Rightarrow '\vartheta::ev-eq) \Rightarrow ('\sigma\text{ relation}) \Rightarrow (('\vartheta, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}) \Rightarrow ('\sigma \Rightarrow '\vartheta\ \text{set}) \Rightarrow ('\vartheta, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}\)
where
\(i\text{Prefix}\ c\ i\ j\ S\ P \equiv \text{action-of}(R(\text{true} \vdash (\lambda (A, A'). (\text{do-I}\ c\ (S\ (\text{more}\ A)))\ (A, A') \& \text{more}\ A' = \text{more}\ A)))\); ' P

definition
\(o\text{Prefix}:('\sigma \Rightarrow '\vartheta) \Rightarrow ('\vartheta::ev-eq, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}\)
where
\(o\text{Prefix}\ c\ P \equiv \text{action-of}(R(\text{true} \vdash (\text{do}\ c) \& \text{more}\ A' = \text{more}\ A)))\); ' P

definition
\(\text{Prefix0}:('\sigma \Rightarrow '\vartheta) \Rightarrow ('\vartheta::ev-eq, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}\)
where
\(\text{Prefix0}\ c\ P \equiv \text{action-of}(R(\text{true} \vdash (\text{do}\ (\lambda (\cdot, c)) \& (\lambda (A, A'). \text{more}\ A' = \text{more}\ A)))\); ' P

definition
\(\text{read1}:('v \Rightarrow '\vartheta) \Rightarrow ('v, '\sigma)\text{ var-list} \Rightarrow ('\vartheta::ev-eq, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}\)
where
\(\text{read1}\ c\ x\ S\ P \equiv i\text{Prefix}\ (\lambda A.\ c\ ('\text{select}\ x\ A))\ (\lambda (s, s').\ \exists\ a.\ s' = \text{increase}\ x\ a\ s)\ (\text{Let}\ x)\ (\lambda.\ c'(S\ s))\ P\)

definition
\(\text{write1}:('v \Rightarrow '\vartheta) \Rightarrow ('\sigma \Rightarrow 'v) \Rightarrow ('\vartheta::ev-eq, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}\)
where
\(\text{write1}\ c\ a\ P \equiv o\text{Prefix}\ (\lambda A.\ c\ (a\ A))\ P\)

definition
\(\text{write0}:'\vartheta \Rightarrow ('\vartheta::ev-eq, '\sigma)\text{ action} \Rightarrow ('\vartheta, '\sigma)\text{ action}\)
where
\(\text{write0}\ c\ P \equiv \text{Prefix0}\ c\ P\)

syntax
\(\text{-read}\ : [i d, \text{pttrn}, ('\vartheta, '\sigma)\text{ action}] \Rightarrow ('\vartheta, '\sigma)\text{ action}((\cdot\ 'v::/\rightarrow\ (-))\)
\(\text{-readS}\ : [i d, \text{pttrn}, '\vartheta\ \text{set}, ('\vartheta, '\sigma)\text{ action}] \Rightarrow ('\vartheta, '\sigma)\text{ action}((\cdot 'v::/\rightarrow\ (-))\)
\(\text{-readSS}\ : [i d, \text{pttrn}, '\sigma \Rightarrow '\vartheta\ \text{set}, ('\vartheta, '\sigma)\text{ action}] \Rightarrow ('\vartheta, '\sigma)\text{ action}((\cdot 'v::/\rightarrow\ (-))\)
\(\text{-write}\ : [i d, '\vartheta, ('\vartheta, '\sigma)\text{ action}] \Rightarrow ('\vartheta, '\sigma)\text{ action}((\cdot 'v::/\rightarrow\ (-))\)
\(\text{-writeS}\ : ['\vartheta, ('\vartheta, '\sigma)\text{ action}] \Rightarrow ('\vartheta, '\sigma)\text{ action}((\cdot /\rightarrow\ (-))\)

translations
\(\text{-read}\ c\ P \quad ==\ \text{CONST}\ \text{read}\ c\ \text{VAR-LIST}\ p\ P\)

87
lemma Prefix-is-action:
\(\forall c \in \text{do } c \wedge (\lambda (A, A'). \text{more } A' = \text{more } A)) \in \{ p. \text{is-CSP-process } p \} \)
by (auto intro: rd-is-CSP)

lemma Prefix1-is-action:
\(\forall c \in \text{do } c \wedge (\lambda (A, A'). \text{do-I } c (S (\text{alpha-rp more } A)) (A, A') \wedge \text{alpha-rp more } A' = \text{alpha-rp more } A)) \in \{ p. \text{is-CSP-process } p \} \)
by (auto intro: rd-is-CSP)

lemma Prefix0-is-action:
\(\forall c \in \text{do } c \wedge (\lambda (A, A'). \text{more } A' = \text{more } A)) \in \{ p. \text{is-CSP-process } p \} \)
by (auto intro: rd-is-CSP)

lemmas Prefix-is-CSP = Prefix-is-action[simplified]
lemmas Prefix1-is-CSP = Prefix1-is-action[simplified]
lemmas Prefix0-is-CSP = Prefix0-is-action[simplified]

lemma relation-of-iPrefix:
relation-of (iPrefix c i j S P) =
\(\{ \{ R(\alpha (\lambda (A, A'). \text{more } A' = \text{more } A)) \} \} \)
by (simp add: iPrefix-def relation-of-Seq action-of-inverse Prefix1-is-CSP)

lemma relation-of-oPrefix:
relation-of (oPrefix c P) =
\(\{ \{ R(\alpha (\lambda (A, A'). \text{more } A' = \text{more } A)) \} \} \)
by (simp add: oPrefix-def relation-of-Seq action-of-inverse Prefix0-is-CSP)

lemma relation-of-Prefix0:
relation-of (Prefix0 c P) =
\(\{ \{ R(\alpha (\lambda (A, A'). \text{more } A' = \text{more } A)) \} \} \)
by (simp add: Prefix0-def relation-of-Seq action-of-inverse Prefix0-is-CSP)

lemma mono-iPrefix : mono (iPrefix c i j s)
by (auto simp: mono-def less-eq-action ref-def relation-of-iPrefix)

lemma mono-oPrefix : mono (oPrefix c)
by (auto simp: mono-def less-eq-action ref-def relation-of-oPrefix)

lemma mono-Prefix0 : mono(Prefix0 c)
by (auto simp: mono-def less-eq-action ref-def relation-of-Prefix0)
15.17 Hiding

definition Hide::<\theta::ev-eq, '\sigma> action \Rightarrow '\theta set \Rightarrow ('\theta, '\sigma) action (infixl \setminus 18)
where
P \setminus cs \equiv \text{action-of}(R(\lambda(S, S'). \exists s. (\text{diff-tr } S' S) = (\text{tr-filter } (s - (\text{tr } S)) cs) \&
(\text{relation-of } P)(S, S'(\text{tr} := s, \text{ref} := (\text{ref } S') \cup cs))); (\text{relation-of Skip}))

definition
hid P cs == (R(\lambda(S, S'). \exists s. (\text{diff-tr } S' S) = (\text{tr-filter } (s - (\text{tr } S)) cs) \&
(\text{relation-of } P)(S, S'(\text{tr} := s, \text{ref} := (\text{ref } S') \cup cs))); (\text{relation-of Skip}))

lemma hid-is-R: hid P cs is R healthy
apply (simp add: hid-def)
apply (rule seq-R)
apply (simp add: Healthy-def R-idem2)
apply (rule CSP-is-R)
apply (rule relation-of-CSP)
done

lemma hid-Skip: hid P cs = (hid P cs ; ; \text{relation-of Skip})
by (simp add: hid-def comp-assoc[symmetric] Skip-comp-absorb)

lemma hid-is-CSP1: hid P cs is CSP1 healthy
apply (auto simp: design-defs CSP1-def hid-def rp-defs fun-eq-iff)
apply (rule-tac b=a in comp-intro)
apply (clarsimp split: cond-splits)
apply (subst CSP-is-rd, auto simp: rp-defs relation-of-CSP design-defs fun-eq-iff split: cond-splits)
apply (auto simp: diff-tr-def relation-of-Skip rp-defs design-defs true-def split: cond-splits)
apply (rule-tac x=[] in exI, auto)
done

lemma hid-is-CSP2: hid P cs is CSP2 healthy
apply (simp add: hid-def)
apply (rule seq-CSP2)
apply (rule CSP-is-CSP2)
apply (rule relation-of-CSP)
done

lemma hid-is-CSP: is-CSP-process (hid P cs)
by (auto simp: csp-defs hid-is-CSP1 hid-is-R hid-is-CSP2)

lemma Hide-is-action:
(R(\lambda(S, S'). \exists s. (\text{diff-tr } S' S) = (\text{tr-filter } (s - (\text{tr } S)) cs) \&
(\text{relation-of } P)(S, S'(\text{tr} := s, \text{ref} := (\text{ref } S') \cup cs))); (\text{relation-of Skip})) \in
{p. is-CSP-process p}
by (simp add: hid-is-CSP[simplified hid-def])

89
lemmas Hide-is-CSP = Hide-is-action[simplified]

lemma relation-of-Hide:
relation-of (P \ cs) = (R(\lambda(S, S'). \exists s. (diff-tr S' S) = (tr-filter (s - (tr S)) cs) & (relation-of P)(S, S'[tr := s, ref := (ref S') \cup cs])); (relation-of Skip))
by (simp add: Hide-def action-of-inverse Hide-is-CSP)

lemma mono-Hide : mono(\lambda P. P \ cs)
by (auto simp: mono-def less-eq-action ref-def prefixeq-def utp-defs relation-of-Hide rp-defs)

15.18 Recursion

To represent the recursion operator "\mu" over actions, we use the universal least fix-point operator "lfp" defined in the HOL library for lattices. The operator "lfp" is inherited from the "Complete Lattice class" under some conditions. All theorems defined over this operator can be reused.

In the Circus-Actions theory, we presented the proof that Circus actions form a complete lattice. The Knaster-Tarski Theorem (in its simplest formulation) states that any monotone function on a complete lattice has a least fixed-point. This is a consequence of the basic boundary properties of the complete lattice operations. Instantiating the complete lattice class allows one to inherit these properties with the definition of the least fixed-point for monotonic functions over Circus actions.

syntax -MU::{idt, idt ⇒ (′ϑ, ′σ) action} ⇒ (′ϑ, ′σ) action (\mu - -)
translations -MU X P == CONST lfp (\lambda X. P)

end

16 Circus syntax

theory Circus-Syntax
imports Denotational-Semantics
begin

abbreviation list-select::{′r ⇒ ′a list} ⇒ (′r ⇒ ′a) where
list-select Sel ≡ hd o Sel

abbreviation list-update::{(′a list ⇒ ′a list)} ⇒ ′r ⇒ ′r
⇒ (′a ⇒ ′a) ⇒ ′r ⇒ ′r where
list-update Upd ≡ λ e. Upd (λ l. (e (hd l))#(tl l))

abbreviation list-update-const::{(′a list ⇒ ′a list)} ⇒ ′r ⇒ ′r
⇒ ′a ⇒ ′r relation where
list-update-const Upd ≡ λ e. λ (A, A'). A' = Upd (λ l. e#(tl l)) A
abbreviation update-const::[(a ⇒ r) ⇒ r ⇒ r]
⇒ a ⇒ r relation where
update-const Upd ≡ λ e. λ (A, A'). A' = Upd (λ -. e) A

syntax
-synt-assign :: id ⇒ 'a ⇒ 'b relation (· := ·)

ML

val type vars-data = {
 State-vars: string list,
 Alpha-vars: string list
}

val fun make-vars-data (sv, av) = {
 State-vars=sv, Alpha-vars=av
}

structure VARs-Data = Proof-Data
{
 type T = vars-data
 fun init - : T = make-vars-data ([], [])
}

nonterminal circus-action and circus-schema

syntax
-circus-action :: 'a => circus-action (-)
-circus-schema :: 'a => circus-schema (-)

parse-translation

let
 fun antiquote-tr ctxt =
 let
 val { State-vars=sv, Alpha-vars=av } = VARs-Data.get ctxt
 fun get-selector x =
 let val c = Consts.intern (Proof-Contextconsts-of ctxt) x
 in
 if member (op =) av x then SOME (Const (Circus-Syntax.list-select,
 dummyT) $ (Syntax.const c)) else
 if member (op =) sv x then SOME (Syntax.const c) else NONE
 end;
 fun get-update x =
 let val c = Consts.intern (Proof-Contextconsts-of ctxt) x
 in
 if member (op =) av x then SOME (Const (Circus-Syntax.list-update-const,
 dummyT) $ (Syntax.const (cˆRecord.updateN))) else
 NONE
 end
 in
 SOME (Const (Circus-Syntax.let-update-const,
 dummyT) $ (Syntax.const (cˆRecord.updateN)))
 end
 in
 SOME (Const (Circus-Syntax.let-update-const,
 dummyT) $ (Syntax.const (cˆRecord.updateN)))
 end

91
if member (op =) sv x then SOME (Const (Circus-Syntax.update-const, dummyT)) $ (Syntax.const (c `Record.updateN))) else NONE end;

fun print text = (fn x => let val - = writeln text; in x end);

val rel-op-type = @
{typ ('a × 'b ⇒ bool) ⇒ ('b × 'c ⇒ bool) ⇒ 'a × 'c ⇒ bool};

fun tr i (t as Free (x, -)) = (case get-selector x of SOME c => c $ Bound (i + 1) | NONE => SOME y => (case get-selector y of SOME c => c $ Bound i | NONE => t) | NONE => t) | tr i (t as (Const (synt-assign, -) $ Free (x, -) $ r)) = (case get-update x of SOME c => c $ (tr i r) $ (Const (Product-Type.Pair, dummyT) $ Bound (i + 1) $ Bound i) | NONE => t) (*
| tr i (t as (Const (c, rel-op-type) $ l $ r)) = print c
| ((Syntax.const @{const-name prod-case}) $ Abs (B, dummyT, Abs (B', dummyT, Const (c, rel-op-type)))) $ tr i
| l $ tr i r) $ (Const (Product-Type.Pair, dummyT) $ Bound (i + 1) $ Bound i)*) | tr i (t $ u) = tr i t $ tr i u | tr i (Abs (x, T, t)) = Abs (x, T, tr (i + 1) t) | tr - a = a;
in tr 0 end;

fun quote-tr ctxt [t] = Syntax.const @{const-name case-prod} $ Abs (A, dummyT, Abs (A', dummyT, antiquote-tr ctxt (Term.incr-boundvars 2 t))) $ quote-tr - ts = raise TERM (quote-tr, ts);
in ([@{syntax-const -circus-schema}, quote-tr]) end
⟩⟩

ML ⟨⟨
fun get-fields (SOME (fields, parent, ...): Record.info)) thy = (case parent of SOME (-,y) => fields $ get-fields (Record.get-info thy y) thy | NONE => fields) | get-fields NONE - = []

92
val dummy = Term.dummy-pattern dummyT;
fun mk-eq (l, r) = HOLogic.Trueprop $ ((HOLogic.eq-const dummyT) $ l $ r)

fun add-datatype (params, binding) constr-specs thy =
 let
 val (dt-name, thy') = thy |
 Datatype.add-datatype {strict = true, quiet = true}
 (((binding, params, NoSyn), constr-specs));
 val constr-names =
 map fst (the-single (map (#3 o snd) (#descr (Datatype-Data.the-info thy'
 dt-name))));
 val constrs = map #1 constr-specs ~~~ map constr (constr-names ~~~ map #2
 constr-specs);
 in ((dt-name, constrs), thy') end;

fun define-channels (params, binding) typesyn channels thy =
 case typesyn of
 NONE =>
 let
 val dt-binding = Binding.suffix-name -channels binding;
 val constr-specs = map (fn (b, opt-T) => (b, the-list opt-T, NoSyn))
 channels;
 val ((dt-name, constrs), thy1) =
 add-datatype (params, dt-binding) constr-specs thy;
 val T = Type (dt-name, []);
 val fun-name = ev-eq ˆ - ˆ Long-Name.base-name dt-name;
 val ee-equ = Free (fun-name, T ---> T ---> HOLogic.boolT);
 val eqs = map-product (fn (_, (c, n)) => (fn (_, (c1,n1)) =>
 let
 val t = Term.list-comb (c, replicate n dummy);
 val t1 = Term.list-comb (c1, replicate n1 dummy);
 in (if c = c1 then mk-eq ((ee-equ $ t $ t1), @{term True}) else
 mk-eq ((ee-equ $ t $ t1), @{term False})) end)) constrs constrs;
 in
tac = rtac (Drule.instantiate' [] [SOME x] (#exhaust (Datatype.the-info
 (Proof-Context.theory-of ctxt) dt-name)));
 end

fun proof ctxt = (Class.intro-classes-tac [] THEN
 Subgoal.FOCUS (fn {context = ctxt', params = [(_, x), ...]} =>
 (case-tac x ctxt) 1
 THEN auto-tac ctxt') ctxt I THEN
 Subgoal.FOCUS (fn {context = ctxt', params = [(_, x), (_, y)], ...
 THEN ALL-NEW (case-tac y
 case-tac x ctxt) THEN-ALL-NEW (case-tac y

93
val thy2 = thy1
 |> Class.instantiation ([dt-name], params, @{sort ev-eq})
 |> Function-Fun.add-fun [[Binding.name fun-name, NONE, NoSyn]]
 (map (pair Attrib.empty-binding) eqs) Function-Fun.fun-config
 |> Local-Theory.restore
 |> Class.prove-instantiation-exit (fn ctxt => proof ctxt);

in
 ((dt-name, constrs), thy2)
end

| (SOME typn) =>
 let
 val dt-binding = Binding.suffix-name -channels binding;

 val (dt-name, thy1) = thy
 |> Named-Target.theory-init
 |> (fn ctxt => Typedecl.abbrev (dt-binding, map fst params, NoSyn)
 (Proof-Context.read-typ ctxt typn) ctxt);

 val thy2 = thy1 |> Local-Theory.exit-global;

in
 ((dt-name, []), thy2)
end;

fun define-chanset binding channel-constrs (name, chans) thy =

let
 val constrs = filter (fn (b, _) => exists (fn a => a = Binding.name-of b) chans)
 channel-constrs;

 val bad-chans = filter-out (fn a => exists (fn (b, _) => a = Binding.name-of b)
 channel-constrs) chans;

 val - = null bad-chans orelse error (Bad elements " commas-quote bad-chans " in chanset: " quote (Binding.print name));

 val base-name = Binding.name-of name;

 val cs = map (fn (_, (c, n)) => Term.list-comb (c, replicate n (Const (@{const-name undefined}, dummyT))))
 constrs;

 val chanset-eq = mk-eq ((Free (base-name, dummyT)), (HOLogic.mk_set dummyT cs));

in
 thy
 |> Named-Target.theory-init
 |> Specification.definition
 (SOME (Binding.qualified true base-name binding, NONE, NoSyn),

ctxt)) 1

THEN auto-tac ctxt') ctxt 1);
fun define-nameset binding (rec-binding, alphabet) (ns-binding, names) thy =
 let
 val all-selectors = get-fields (Record.get-info thy (Sign.full-name thy rec-binding)) thy
 val bad-names =
 filter-out (fn a => exists (fn (b, _) => String.isSuffix a b) all-selectors) names;
 val - = null bad-names orelse error (Bad elements ^ commas-quote bad-names ^ in nameset: ^ quote (Binding.print ns-binding));
 val selectors =
 filter (fn (b, _) => exists (fn a => String.isSuffix a b) names) all-selectors;
 val selectors' = map (fn (x, y) => (x, Const(y, dummyT))) selectors;
 val updates' = map (fn (x, y) => (x, Const(y, dummyT))) updates;
 val l =
 map (fn (b, _) => Binding.name-of b) alphabet;
 val formulas = map2 (fn (nx, x) =>
 fn (ny, y) =>
 if (exists (fn b => String.isSuffix b nx) l)
 then Abs (A, dummyT, (Const(Circus-Syntax.list-update, dummyT) $ x)
 $(Abs (-, dummyT, (Const(Circus-Syntax.list-select, dummyT) $ y) $ (Bound 1))))
 else Abs (A, dummyT, x $ (Abs (-, dummyT, y $ (Bound 1)))))
 updates' selectors';
 val base-name = Binding.name-of ns-binding;
 fun comp [a] = a $ (Bound 1) $ (Bound 0)
 | comp (a::l) = a $ (Bound 1) $ (comp l);
 val nameset-eq = mk-eq ((Free(base-name, dummyT)), (Abs (-, dummyT, (Abs (-, dummyT, comp formulas)))));
 in
 thy
 |> Named-Target.theory-init
 |> Specification.definition
 (SOME (Binding.qualified true base-name binding, NONE, NoSyn),
 (Attrib.empty-binding, nameset-eq))
 |> snd |> Local-Theory.exit-global
 end;

fun define-schema binding (ex-binding, expr) (alph-bind, alpha, state) thy =
 let
 val fields-names = (map (fn (x, T) => (Binding.name-of x, T)) (alpha @ state));
val alpha' = (map (fn (x, T) => (Binding.name-of x, T)) alpha);
val state' = (map (fn (x, T) => (Binding.name-of x, T)) state);
val all-selectors = get-fields (Record.get-info thy (Sign.full-name thy alph-bind))

thy
val base-name = Binding.name-of ex-binding;
val ctxt = Proof-Context.init-global thy;
val term =
 Syntax.read-term
 (ctxt
 |> VARs-Data.put ({{State-vars=(map fst state'), Alpha-vars=(map fst alpha')}})
 |> Config.put Syntax.root @{nonterminal circus-schema} expr;
val sc-eq = mk-eq ((Free (base-name, dummyT)), term);
in
thy
 |> Named-Target.theory-init
 |> Specification.definition
 (SOME (Binding.qualified true base-name binding, NONE, NoSyn), (Attrib.empty-binding,
 sc-eq))
 |> snd
 |> Local-Theory.exit-global
end;

fun define-action binding (ex-binding, expr) alph-bind chan-bind thy =
 let
 val base-name = Binding.name-of ex-binding;
 val ctxt = Proof-Context.init-global thy;
 val actT = Circus-Actions.action;
 val action-eq =
 mk-eq
 (Free (base-name,
 Type (actT, [{Proof-Context.read-type-name {proper=true, strict=false}
 ctxt (Sign.full-name thy chan-bind}),
 (Proof-Context.read-type-name {proper=true, strict=false}
 ctxt (Sign.full-name thy alph-bind))])))
 (Syntax.parse-term ctxt expr));
in
thy
 |> Named-Target.theory-init
 |> Specification.definition
 (SOME (Binding.qualified true base-name binding, NONE, NoSyn), (Attrib.empty-binding,
 action-eq))
 |> snd
 |> Local-Theory.exit-global
end;
fun define-expr binding (alph-bind, alpha, state) chan-bind (ex-binding, (is-schema, expr)) =
 if is-schema then define-schema binding (ex-binding, expr) (alph-bind, alpha, state)
 else define-action binding (ex-binding, expr) alph-bind chan-bind;

fun prep-field prep-typ (b: binding, raw-T) ctxt =
 let
 val T = prep-typ ctxt raw-T;
 val ctxt' = Variable.declare-typ T ctxt;
 in ((b, T), ctxt') end;

fun prep-constr prep-typ (b: binding, raw-T) ctxt =
 let
 val T = Option.map (prep-typ ctxt) raw-T;
 val ctxt' = fold Variable.declare-typ (the-list T) ctxt;
 in ((b, T), ctxt') end;

fun gen-circus-process prep-constraint prep-typ
 (raw-params, binding) raw-alphabet raw-state (typesyn, raw-channels) namesets
 chansets
 exprs act thy =
 let
 val ctxt = Proof-Context.init-global thy;

 (* internalize arguments *)
 val params = map (prep-constraint ctxt) raw-params;
 val ctxt0 = fold (Variable.declare-typ o TFree) params ctxt;

 val (alphabet, ctxt1) = fold-map (prep-field prep-typ) raw-alphabet ctxt0;
 val (state, ctxt2) = fold-map (prep-field prep-typ) raw-state ctxt1;
 val (channels, ctxt3) = fold-map (prep-constr prep-typ) raw-channels ctxt2;

 val params' = map (Proof-Context.check-tfree ctxt3) params;

 (* type definitions *)
 val fields =
 map (fn (b, T) => (b, T, NoSyn)) (map (apsnd HOLogic.listT) alphabet @ state);

 val thy1 = thy
 |> not (null fields)
Record.add-record (params', Binding.suffix-name -alphabet binding) NONE
fields;
val (channel-constrs, thy2) =
 if not (null channels) orelse is-some typesyn
 then apfst snd (define-channels (params', binding) typesyn channels thy1)
 else ([], thy1);
val thy3 = thy2
|> not (null chansets) ? fold (define-chanset binding channel-constrs) chansets
|> not (null namesets) ?
 fold (define-nameset binding ((Binding.suffix-name -alphabet binding), alphabet)) namesets
|> not (null exprs) ?
 fold (define-expr binding ((Binding.suffix-name -alphabet binding), alphabet, state)
 (Binding.suffix-name -channels binding)) exprs
|> not (null actions) ?
 fold (define-action binding (binding, act)
 (Binding.suffix-name -alphabet binding) (Binding.suffix-name -channels binding);
 in
 thy3
end;

fun circus-process x = gen-circus-process (K I) Syntax.check-typ x;
fun circus-process-cmd x = gen-circus-process (apsnd o Typedecl.read-constraint) Syntax.read-typ x;
circus-process-fn := circus-process-cmd;

⟩⟩ end

17 Refinement and Simulation

theory Refinement
imports Denotational-Semantics Circus-Syntax
begin

17.1 Definitions

In the following, data (state) simulation and functional backwards simulation are defined. The simulation is defined as a function S, that corresponds to a state abstraction function.
definition Simul S b = extend (make (ok b) (wait b) (tr b) (ref b)) (S (more b))
definition Simulation::(\theta::ev-eq',\sigma) action ⇒ ('\sigma 1 ⇒ 'σ) ⇒ ('\theta, 'σ 1) action ⇒ bool (- ≤- -)

98
where
\[A \preceq S B \equiv \forall a \ b. \ (\text{relation-of } B) \ (a, b) \rightarrow (\text{relation-of } A) \ (\text{Simul } S a, \text{ Simul } S b) \]

17.2 Proofs

In order to simplify refinement proofs, some general refinement laws are defined to deal with the refinement of Circus actions at operators level and not at UTP level. Using these laws, and exploiting the advantages of a shallow embedding, the automated proof of refinement becomes surprisingly simple.

Lemma *Stop-Sim*: \(\text{Stop} \preceq S \text{Stop} \)

by (auto simp: Simulation-def relation-of-Stop rp-defs design-defs Simul-def alpha-rp.defs

Lemma *Skip-Sim*: \(\text{Skip} \preceq S \text{Skip} \)

by (auto simp: Simulation-def relation-of-Skip design-def rp-defs Simul-def alpha-rp.defs

Lemma *Chaos-Sim*: \(\text{Chaos} \preceq S \text{Chaos} \)

by (auto simp: Simulation-def relation-of-Chaos rp-defs design-def Simul-def alpha-rp.defs

Lemma *Ndet-Sim*: assumes \(A: P \preceq S Q \) and \(B: P' \preceq S Q' \)
shows \((P \cap P') \preceq S (Q \cap Q') \)
by (insert A B, auto simp: Simulation-def relation-of-Ndet)

Lemma *Det-Sim*: assumes \(A: P \preceq S Q \) and \(B: P' \preceq S Q' \)
shows \((P \cap P') \preceq S (Q \cap Q') \)
by (auto simp: Simulation-def relation-of-Det design-def rp-defs Simul-def alpha-rp.defs

Lemma *Schema-Sim*: assumes \(A: \forall a. \ (\text{Pre sc1} \ (S a) \Rightarrow (\text{Pre sc2}) \ a) \)
and \(B: \forall a b. \ [\text{Pre sc1} \ (S a) ; \text{sc2} \ (a, b)] \Rightarrow \text{sc1} \ (S a, S b) \)
shows \((\text{Schema sc1}) \preceq S (\text{Schema sc2}) \)
by (auto simp: Simulation-def Simul-def relation-of-Schema rp-defs design-defs alpha-rp.defs A B

Lemma *Sub-Sim*:
lemma \textit{Seq-Sim}:
\begin{align*}
\text{assumes } A: \bigwedge a. (Pre \; sc1) (S \; a) \implies (Pre \; sc2) a \\
\text{and } B: \bigwedge a. b. \left[\begin{array}{l}
(Pre \; sc1) (S \; a) ; (Pre \; sc2) (a, b)\end{array}\right] \implies sc1 (S \; a, S \; b) \\
\text{and } C: P \preceq S Q \\
\text{shows } (\text{state-update-before sc1 P}) \preceq S (\text{state-update-before sc2 Q})
\end{align*}

apply (auto simp: Simulation-def Simul-def relation-of-state-update-before rp-defs design-defs alpha-rp.defs A B \\
split: cond-splits)
apply (erule C [simplified Simulation-def, rule-format])
apply (rule-tac b = Simul S ba in comp-intro)
apply (clarsimp split: cond-splits)+
apply (case-tac ok aa, simp-all)
apply (erule notE) back
apply (erule C [simplified Simulation-def, rule-format])
apply (rule-tac b = Simul S ba in comp-intro)
apply (clarsimp split: cond-splits)+
apply (rule A)
apply (case-tac Pre sc1 (S (alpha-rp.more aa)), simp-all)
apply (erule notE) back
apply (erule C [simplified Simulation-def, rule-format])
apply (rule-tac b = Simul S ba in comp-intro)
apply (clarsimp split: cond-splits)+
apply (rule B)
done

lemma \textit{Par-Sim}:
\begin{align*}
\text{assumes } A: P \preceq S Q \text{ and } B: P' \preceq S Q' \\
\text{shows } (P' \; ;' P') \preceq S (Q' \; ;' Q')
\end{align*}

by (auto simp: Simulation-def relation-of-Seq dest: A[simplified Simulation-def, rule-format]
B[simplified Simulation-def, rule-format])
design-defs spec-def

alpha-rp.defs

dest: A[simplified Simulation-def Simul-def, rule-format]
B[simplified Simulation-def Simul-def, rule-format]

apply (split cond-splits)+
apply (simp, erule disjE, rule disjI1, simp, rule disjI2, simp-all, rule impI)
apply (auto)
apply (erule-tac \(x=tr\) ba in allE, auto)
apply (erule notE) back
apply (rule-tac \(b=\text{Simul} S\) ba\(\{ok := False\}\) in comp-intro)
apply (auto simp: alpha-rp.defs dest: A[simplified Simulation-def Simul-def, rule-format])
apply (erule-tac \(x=tr\) bb in allE, auto)
apply (erule notE) back
apply (rule-tac \(b=\text{Simul} S\) bb\(\{ok := False\}\) in comp-intro)
apply (auto simp: alpha-rp.defs dest: B[simplified Simulation-def Simul-def, rule-format])
apply (erule-tac \(x=tr\) ba in allE, auto)
apply (erule notE) back
apply (rule-tac \(b=\text{Simul} S\) ba\(\{ok := False\}\) in comp-intro)
apply (auto simp: alpha-rp.defs dest: A[simplified Simulation-def Simul-def, rule-format])
apply (rule impI)
apply (erule-tac \(x=\text{Simul} S\) s1 in \(\exists I\))
apply (rule impI)
apply (rule impI)
apply (auto simp: alpha-rp.defs dest!: B[simplified Simulation-def Simul-def, rule-format]
A[simplified Simulation-def Simul-def, rule-format]
split: cond-splits)
apply (rule-tac \(b=\text{Simul} S\) ba in comp-intro)
apply (auto simp add: M-par-def alpha-rp.defs diff-tr-def fun-eq-iff ParMerge-def Simul-def
split : cond-splits)
apply (rule-tac \(b=\{ok = ok\ bb, wait = wait\ bb, tr = tr\ bb, ref = ref\ bb,\)
\(\ldots = S\ (alpha-rp.more\ bb)\}\) in comp-intro, auto)
apply (subst D[where \(a=(alpha-rp.more\ s1)\) and \(b=(alpha-rp.more\ aa)\), symmetric], simp)
apply (subst C[where \(a=(alpha-rp.more\ s2)\) and \(b=(alpha-rp.more\ bb)\), symmetric], simp)
apply (rule-tac \(b=\{ok = ok\ bb, wait = wait\ bb, tr = tr\ bb, ref = ref\ bb,\)
\(\ldots = S\ (alpha-rp.more\ bb)\}\) in comp-intro, auto)
apply (subst D[where \(a=(alpha-rp.more\ s1)\) and \(b=(alpha-rp.more\ aa)\), symmetric], simp)
apply (subst C[where \(a=(alpha-rp.more\ s2)\) and \(b=(alpha-rp.more\ bb)\), symmetric], simp)
done

lemma Assign-Sim:
 assumes A: ⋀ A. vy A = vx (S A)
 and B: ⋀ ff A. ((S (y-update ff A)) = x-update ff (S A))
 shows (x := vx) ⪯S (y := vy)
by (auto simp: Simulation-def relation-of-Assign update-def rp-defs design-defs Simul-def A B
 alpha-rp.defs split: cond-splits)

lemma Var-Sim:
 assumes A: P ⪯S Q and B: ⋀ A. (S ((snd b) ff A)) = (snd a) ff (S A)
 shows (Var a P) ⪯S (Var b Q)
apply (auto simp: Simulation-def relation-of-Var rp-defs design-defs fun-eq-iff Simul-def B
 alpha-rp.defs increase-def decrease-def)
apply (rule-tac b = Simul S ab in comp-intro)
apply (split cond-splits)+
apply (auto simp: B alpha-rp.defs Simul-def elim!: alpha-rp-eqE)
apply (rule-tac b = Simul S bb in comp-intro)
apply (split cond-splits)+
apply (auto simp: B alpha-rp.defs Simul-def elim!: alpha-rp-eqE dest!: A[simplified Simulation-def Simul-def;
rule-format])
apply (split cond-splits)+
apply (simp add: alpha-rp.defs)
apply (erule disjE, rule disj1, simp, rule disj2, simp)
apply (simp-all add: alpha-rp.defs true-def)
apply (rule impI, (erule conjE | simp)+)
apply (simp add: B)
apply (split cond-splits)+
apply (simp add: alpha-rp.defs)
apply (erule disjE, rule disj1, simp, rule disj2, simp-all)
apply (rule impI, (erule conjE | simp)+)
apply (simp add: B)
done

lemma Guard-Sim:
 assumes A: P ⪯S Q and B: ⋀ A. h A = g (S A)
 shows (g &\ h) ⪯S (h &\ Q)
apply (auto simp: Simulation-def)
apply (case-tac h (alpha-rp.more a))
defer
apply (case-tac g (S (alpha-rp.more a)))
apply (auto simp: true-Guard1 false-Guard1 Simul-def alpha-rp.defs Simulation-def B
 dest!: A[simplified, rule-format] Stop-Sim[simplified, rule-format])
done
lemma Write0-Sim:
assumes A: P ≤ S Q
shows a → P ≤ S a → Q
using A
apply (auto simp: Simulation-def write0-def relation-of-Prefix0 design-defs rp-defs)
apply (erule-tac x = ba in allE)
apply (erule-tac x = c in allE, auto)
apply (rule-tac b = Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-def)
done

lemma Read-Sim:
assumes A: P ≤ S Q and B: ∏ A. (d A) = c (S A)
shows a'?'c → P ≤ S a'?'d → Q
using A
apply (auto simp: Simulation-def read-def relation-of-iPrefix design-defs rp-defs)
apply (erule-tac x = ba in allE, erule-tac x = ca in allE, simp)
apply (rule-tac b = Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-I-def select-def B)
done

lemma Read1-Sim:
assumes A: P ≤ S Q and B: ∏ A. (d A) = c (S A)
shows a'?'c' ∈ s → P ≤ S a'?'d' ∈ s' → Q
using A
apply (auto simp: Simulation-def read1-def relation-of-iPrefix design-defs rp-defs)
apply (erule-tac x = ba in allE, erule-tac x = ca in allE, simp)
apply (rule-tac b = Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-I-def select-def B)
done

lemma Read1S-Sim:
assumes A: P ≤ S Q and B: ∏ A. (d A) = c (S A) and C: ∏ A. (s' A) = s (S A)
shows a'?'c'∈'s → P ≤ S a'?'d'∈'s' → Q
using A
apply (auto simp: Simulation-def read1-def relation-of-iPrefix design-defs rp-defs)
apply (erule-tac x = ba in allE, erule-tac x = ca in allE, simp)
apply (rule-tac b = Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-I-def select-def B)
done

lemma Write-Sim:
assumes A: P ≤ S Q and B: ∏ A. (d A) = c (S A)
shows a'!c → P ≤ S a'!d → Q
using A
apply (auto simp: Simulation-def write1-def relation-of-oPrefix design-defs rp-defs)
apply (erule-tac x = ba in allE, erule-tac x = ca in allE, simp)
apply (rule-tac b=Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-def select-def B)
done

lemma Hide-Sim:
 assumes A: \(P \preceq S Q \)
 shows \((P \setminus cs) \preceq S (Q \setminus cs) \)
 apply (auto simp: Simulation-def relation-of-Hide design-defs rp-defs Simul-def alpha-rp.defs)
 apply (rule-tac b=Simul S ba in comp-intro)
 apply (split cond-splits)+
 apply (auto simp: Simul-def alpha-rp.defs Simulation-def dest!: [simplified, rule-format] Skip-Sim[simplified, rule-format])
 apply (rule-tac x=s in exI, auto simp: diff-tr-def)
done

lemma lfp-Siml:
 assumes A: \(\bigwedge X \cdot (X \preceq S Q) \Rightarrow ((P X) \preceq S Q) \) and B: mono \(P \)
 shows \((\operatorname{lfp} P) \preceq S Q \)
 apply (rule lfp-ordinal-induct, auto simp: B A)
 apply (auto simp add: Simulation-def Sup-action relation-of-bot relation-of-Sup[simplified])
 apply (subst (asm) CSP-is-rd[OF relation-of-CSP])
 apply (auto simp: rp-defs fun-eq-iff Simul-def alpha-rp.defs decrease-def split: cond-splits)
done

lemma Mu-Sim:
 assumes A: \(\bigwedge X Y \cdot X \preceq S Y \Rightarrow (P X) \preceq S (Q Y) \)
 and B: mono \(P \) and C: mono \(Q \)
 shows \((\operatorname{lfp} P) \preceq S (\operatorname{lfp} Q) \)
 apply (rule lfp-Siml, drule A)
 apply (subst lfp-unfold, simp-all add: B C)
done

lemma bot-Sim: \(\text{bot} \preceq S \text{bot} \)
by (auto simp: Simulation-def rp-defs Simul-def relation-of-bot alpha-rp.defs split: cond-splits)

lemma sim-is-ref: \(P \subseteq Q = P \preceq (id) Q \)
apply (auto simp: ref-def Simulation-def Simul-def alpha-rp.defs)
apply (erule-tac x=a in allE)
apply (erule-tac x=b in allE, auto)
apply (rule-tac t=[\{(ok = ok a, wait = wait a, tr = tr a, ref = ref a, \ldots = alpha-rp.more a\}] and s=a in subst, simp)
apply (rule-tac t=[\{(ok = ok b, wait = wait b, tr = tr b, ref = ref b, \ldots = alpha-rp.more b\}] and s=b in subst, simp-all)
apply (erule-tac x=a in allE)
apply (erule-tac x=b in allE, auto)
apply (rule-tac s=[\{(ok = ok a, wait = wait a, tr = tr a, ref = ref a, \ldots = \ldots\}] and s=a in subst, simp)
apply (rule-tac s=[\{(ok = ok b, wait = wait b, tr = tr b, ref = ref b, \ldots = \ldots\}] and s=b in subst, simp-all)
18 Concrete example

theory Refinement-Example
imports Refinement
begin

In this section, we present a concrete example of the use of our environment.

end
We define two Circus processes FIG and DFIG, using our syntax. We give the proof of refinement (simulation) of the first process by the second one using the simulation function Sim.

18.1 Process definitions

circus-process FIG =
 alphabet = [v::nat, x::nat]
 state = [idS::nat set]
 channel = [out nat, req, ret nat]
 schema Init = idS' = {}
 schema Out = ∃ a. v' = a ∧ a /∈ idS ∧ idS' = idS ∪ {v'}
 schema Remove = x ∈ idS ∧ idS' = idS − {x}
 where var v (Schema FIG.Init';)
 μ X ((([(req → (Schema FIG.Out))]; 'out!' (hd o v) → Skip))
 □ (ret?'x → (Schema FIG.Remove))); ' X)

circus-process DFIG =
 alphabet = [v::nat, x::nat]
 state = [retidS::nat set, max::nat]
 channel = FIG-channels
 schema Init = retids' = {} ∧ max' = 0
 schema Out = v' = max ∧ max' = (max + 1) ∧ retidS' = retidS − {v'}
 schema Remove = x < max ∧ retidS' = retidS ∪ {x} ∧ max' = max
 where var v (Schema DFIG.Init';)
 μ X ((([(req → (Schema DFIG.Out))]; 'out!' (hd o v) → Skip))
 □ (ret?'x → (Schema DFIG.Remove))); ' X)

definition Sim where
 Sim A = FIG-alphabet.make (DFIG-alphabet.v A) (DFIG-alphabet.x A)
 (\{a. a < (DFIG-alphabet.max A) ∧ a /∈ (DFIG-alphabet.retidS A)\})

18.2 Simulation proofs

For the simulation proof, we give first proofs for simulation over the schema expressions. The proof is then given over the main actions of the processes.

lemma SimInit: (Schema FIG.Init) ≼Sim (Schema DFIG.Init)
 apply (auto simp: Sim-def Pre-def design-defs DFIG.Init-def FIG.Init-def rp-defs
 alpha-rp.defs DFIG-alphabet.defs FIG-alphabet.defs intro!: Schema-Sim)
 apply (rule-tac x=A[\max := 0, retids := {}]| in exI, simp)
 done

lemma SimOut: (Schema FIG.Out) ≼Sim (Schema DFIG.Out)
 apply (rule Schema-Sim)
 apply (auto simp: Pre-def DFIG-alphabet.defs FIG-alphabet.defs
 α-rp.defs)
alpha-rp.defs Sim-def FIG.Out-def DFIG.Out-def

apply (rule-tac x = a \(v := [DFIG\text{-alphabet}\cdot\text{max } a], \text{max} := (Suc (DFIG\text{-alphabet}\cdot\text{max } a))\)),
retidS := retidS a - \{DFIG\text{-alphabet}\cdot\text{max } a\} in \text{exI}, \text{simp})
apply (rule-tac x = a \(v := [DFIG\text{-alphabet}\cdot\text{max } a], \text{max} := (Suc (DFIG\text{-alphabet}\cdot\text{max } a))\)),
retidS := retidS a - \{DFIG\text{-alphabet}\cdot\text{max } a\} in \text{exI}, \text{simp})
done

lemma SimRemove: (Schema FIG.Remove) \preceq \text{Sim} (Schema DFIG.Remove)
apply (rule Schema-Sim)
apply (auto simp: Pre-def DFIG-alphabet.defs FIG-alphabet.defs alpha-rp.defs Sim-def)
apply (clarsimp simp add: DFIG.Remove-def FIG.Remove-def)
apply (clarsimp simp add: DFIG.Remove-def FIG.Remove-def)
apply (auto simp: Pre-def DFIG-alphabet.defs FIG-alphabet.defs alpha-rp.defs Sim-def)
apply (clarsimp simp add: DFIG.Remove-def FIG.Remove-def)
apply (clarsimp simp add: DFIG.Remove-def FIG.Remove-def)
done

lemma FIG.FIG \preceq \text{Sim} DFIG.DFIG
by (auto simp: DFIG.DFIG-def FIG.FIG-def SimIn SimInit Sim-def FIG-alphabet.defs
intro: Var-Sim Seq-Sim Mu-Sim Det-Sim Write0-Sim Write-Sim Read-Sim Skip-Sim)
end

References

