Instances of Schneider’s generalized protocol of clock synchronization.

Damian Barsotti
August 28, 2014

Abstract
Schneider [7] generalizes a number of protocols for Byzantine fault-tolerant clock synchronization and presents a uniform proof for their correctness. In Schneider’s schema, each processor maintains a local clock by periodically adjusting each value to one computed by a convergence function applied to the readings of all the clocks. Then, correctness of an algorithm, i.e., that the readings of two clocks at any time are within a fixed bound of each other, is based upon some conditions on the convergence function. To prove that a particular clock synchronization algorithm is correct, it suffices to show that the convergence function used by the algorithm meets Schneider’s conditions.

Using the theorem prover Isabelle, we formalize the proofs that the convergence functions of two algorithms, namely, the Interactive Convergence Algorithm (ICA) of Lamport and Melliar-Smith [4] and the Fault-tolerant Midpoint algorithm of Lundelius-Lynch [5], meet Schneider’s conditions. Furthermore, we experiment on handling some parts of the proofs with fully automatic tools like ICS[3] and CVC-lite[2].

These theories are part of a joint work with Alwen Tiu and Leonor P. Nieto [1]. In this work the correctness of Schneider schema was also verified using Isabelle (available at http://afp.sourceforge.net/entries/GenClock.shtml).

Contents
1 Interactive Convergence Algorithms (ICA) 2
 1.1 Model of the system 2
 1.1.1 Types in the formalization 2
 1.1.2 Some constants 3
 1.1.3 Convergence function 3
 1.2 Translation Invariance property 3
 1.3 Precision Enhancement property 4
 1.3.1 Auxiliary lemmas 4
 1.3.2 Main theorem 6
1 Interactive Convergence Algorithms (ICA)

theory ICAInstance imports Complex-Main begin

This algorithm is presented in [4].

A proof of the three properties can be found in [8].

1.1 Model of the system

The main ideas for the formalization of the system were obtained from [8].

1.1.1 Types in the formalization

The election of the basics types was based on [8]. There, the process are natural numbers and the real time and the clock readings are reals.

type-synonym process = nat
type-synonym time = real — real time
type-synonym Clocktime = real — time of the clock readings (clock time)
1.1.2 Some constants

Here we define some parameters of the algorithm that we use: the number of process and the fix value that is used to discard the processes whose clocks differ more than this amount from the own one (see [8]). The defined constants must satisfy this axiom (if $np = 0$ we have a division by zero in the definition of the convergence function).

axiomatization

\[np :: \text{nat} \quad \text{— Number of processes and} \]
\[\Delta :: \text{Clocktime} \quad \text{— Fix value to discard processes where} \]
\[\text{constants-ax: } 0 < \Delta \land np > 0 \]

We define also the set of process that the algorithm manage. This definition exist only for readability matters.

definition

\[PR :: \text{process set where} \]
\[\text{[simp]: } PR = \{..<np\} \]

1.1.3 Convergence function

This functions is called “Egocentric Average” ([7])

In this algorithm each process has an array where it store the clocks readings from the others processes (including itself). We formalise that as a function from processes to clock time as [8].

First we define an auxiliary function. It takes a function of clock readings and two processes, and return de reading of the second process if the difference of the readings is greater than Δ, otherwise it returns the reading of the first one.

definition

\[\text{fiX :: } [\text{process} \Rightarrow \text{Clocktime}, \text{process}, \text{process}] \Rightarrow \text{Clocktime where} \]
\[\text{fiX } f \ p \ l = (\text{if } |f \ p - f \ l| < \Delta \text{ then } (f \ l) \text{ else } (f \ p)) \]

And finally the convergence function. This is defined with the builtin generalized summation over a set constructor of Isabelle. Also we had to use the overloaded real function to typecast de number np.

definition

\[\text{cfni :: } [\text{process}, (\text{process} \Rightarrow \text{Clocktime})] \Rightarrow \text{Clocktime where} \]
\[\text{cfni } p \ f = (\sum_{l \in \{..<np\}} \text{fiX } f \ p \ l) / (\text{real } np) \]

1.2 Translation Invariance property.

We first need to prove this auxiliary lemma.

lemma trans-inv':
\[
\left(\sum_{l \in \{..\langle np \rangle\}} f X (\lambda y. f y + x) \ p \ l \right) = \\
\left(\sum_{l \in \{..\langle np \rangle\}} f X \ p \ l \right) + \text{real } np \ast x
\]

\textit{theorem} \ trans-inv: \\
\forall p f x . \ cfni p (\lambda y. f y + x) = cfni p f + x

\textit{proof}

\section{1.3 Precision Enhancement property}

An informal proof of this theorem can be found in [8]

\subsection{1.3.1 Auxiliary lemmas}

\textbf{lemma} \ finitC: \\
\quad \text{\textit{C} \subseteq PR \implies finite C} \\
\textit{proof}

\textbf{lemma} \ finitnpC: \\
\quad \text{finite } (\text{PR} \setminus \text{C}) \\
\textit{proof}

The next lemmas are about arithmetic properties of the generalized sum-
mation over a set constructor.

\textbf{lemma} \ sum-abs-triangle-ineq: \\
\quad \text{finite } S \implies \\
\quad \left| \sum_{l \in S. \ (f :: \text{\textit{nat} \Rightarrow \text{real}})} l \right| \leq \left(\sum_{l \in S. \ |f l|} \right) \\
\quad (\text{is } \ldots \implies \forall S) \\
\textit{proof}

\textbf{lemma} \ sum-le: \\
\quad \left[\text{finite } S \ ; \ \forall \ r \in S. \ f r \leq b \right] \\
\quad \implies \left(\sum_{l \in S. \ f l} \right) \leq \text{real } (\text{card } S) \ast b \\
\quad (\text{is } \left[\text{finite } S \ ; \ \forall \ r \in S. \ f r \leq b \right] \implies \forall S) \\
\textit{proof}

\textbf{lemma} \ sum-np-eq: \\
\quad \text{assumes} \\
\quad \ hC: \ C \subseteq PR \\
\quad \text{shows} \\
\quad \left(\sum_{l \in \{..\langle np \rangle\}. \ f l} \right) = \left(\sum_{l \in C. \ f l} \right) + \left(\sum_{l \in \{..\langle np \rangle\} \setminus C. \ f l} \right) \\
\textit{proof}

\textbf{lemma} \ abs-sum-np-ineq: \\
\quad \text{assumes} \\
\quad \ hC: \ C \subseteq PR \\
\quad \text{shows} \\
\quad \left| \left(\sum_{l \in \{..\langle np \rangle\}. \ (f :: \text{nat} \Rightarrow \text{real}} \right) \right| \leq
\[(\sum_{l \in C. \ |f l\|} + \sum_{l \in (\{..<np\} - C). \ |f l\|}) \text{ is abs-sam} \leq \text{samC + samnpC}\]

(proof)

The next lemmas are about the existence of bounds that are necessary in order to prove the Precision Enhancement theorem.

Lemma fiX-ubound:
\[fiX f p l \leq f p + \Delta\]
(proof)

Lemma fiX-lbound:
\[f p - \Delta \leq fiX f p l\]
(proof)

Lemma abs-fiX-bound:
\[|fiX f p l - f p| \leq \Delta\]
(proof)

Lemma abs-dif-fiX-bound:
assumes\[hbx: \forall \ l \in C. \ |f l - g l| \leq x \text{ and } hby: \forall \ l \in C. \forall \ m \in C. \ |f l - f m| \leq y \text{ and } hpC: p \in C \text{ and } hqC: q \in C\]
shows\[|fiX f p r - fiX g q r| \leq 2 \ast \Delta + x + y\]
(proof)

Lemma abs-dif-fiX-bound-C-aux1:
assumes\[hbx: \forall \ l \in C. \ |f l - g l| \leq x \text{ and } hby1: \forall \ l \in C. \forall \ m \in C. \ |f l - f m| \leq y \text{ and } hby2: \forall \ l \in C. \forall \ m \in C. \ |g l - g m| \leq y \text{ and } hpC: p \in C \text{ and } hqC: q \in C \text{ and } hrC: r \in C\]
shows\[|fiX f p r - fiX g q r| \leq x + y\]
(proof)

Lemma abs-dif-fiX-bound-C-aux2:
assumes\[hbx: \forall \ l \in C. \ |f l - g l| \leq x \text{ and } hby1: \forall \ l \in C. \forall \ m \in C. \ |f l - f m| \leq y \text{ and } hby2: \forall \ l \in C. \forall \ m \in C. \ |g l - g m| \leq y \text{ and } hpC: p \in C \text{ and } hqC: q \in C \text{ and } hrC: r \in C\]
shows
\[y \leq \Delta \implies |\textit{fiX} \ f \ p \ r - \textit{fiX} \ g \ q \ r| \leq x \]

\[\langle \text{proof} \rangle \]

\textbf{lemma} \textit{abs-dif-fiX-bound-C}: \\
\textbf{assumes} \\
hbx: \forall \ l \in C. \ |f \ l - g \ l| \leq x \ \text{and} \\
hby1: \forall \ l \in C. \forall \ m \in C. \ |f \ l - f \ m| \leq y \ \text{and} \\
hby2: \forall \ l \in C. \forall \ m \in C. \ |g \ l - g \ m| \leq y \ \text{and} \\
hpC: \ p \in C \ \text{and} \\
hqC: \ q \in C \ \text{and} \\
hrC: \ r \in C \\
\textbf{shows} \\
|\textit{fiX} \ f \ p \ r - \textit{fiX} \ g \ q \ r| \leq \\
x + (\text{if} \ (y \leq \Delta) \ \text{then} \ 0 \ \text{else} \ y) \\
\langle \text{proof} \rangle \\

\textbf{1.3.2 Main theorem} \\
\textbf{theorem} \textit{prec-enh}: \\
\textbf{assumes} \\
hC: \ C \subseteq PR \ \text{and} \\
hbx: \forall \ l \in C. \ |f \ l - g \ l| \leq x \ \text{and} \\
hby1: \forall \ l \in C. \forall \ m \in C. \ |f \ l - f \ m| \leq y \ \text{and} \\
hby2: \forall \ l \in C. \forall \ m \in C. \ |g \ l - g \ m| \leq y \ \text{and} \\
hpC: \ p \in C \ \text{and} \\
hqC: \ q \in C \ \text{and} \\
hvC: \ r \in C \\
\textbf{shows} \\
|\textit{cfni} \ p \ f - \textit{cfni} \ q \ g| \leq \\
(\text{real} \ (\text{card} \ C) \ast (x + (\text{if} \ (y \leq \Delta) \ \text{then} \ 0 \ \text{else} \ y)) + \\
\text{real} \ (\text{card} \ (\{..<\text{np}\} - C)) \ast (2 \ast \Delta \ast x + y)) \ / \ \text{real} \ np \\
(is \ ?\text{Sl} \ n \ = \ ?\text{Sr} \ n) \\
\langle \text{proof} \rangle \\

\textbf{1.4 Accuracy Preservation property} \\

First, a simple lemma about an arithmetic propertie of the generalized summation over a set constructor. \\
\textbf{lemma} \textit{sum-div-card}: \\
(\sum_{l \in \{..<\text{n}:\text{nat}\}. \ f \ l} + q \ast \text{real} \ n = \\
(\sum_{l \in \{..\lessdot\text{n}\}. \ f \ l} + q) \\
is \ ?\text{Sl} \ n = \ ?\text{Sr} \ n) \\
\langle \text{proof} \rangle \\

Next, some lemmas about bounds that are used in the proof of Accuracy Preservation. \\
\textbf{lemma} \textit{bound-aux-C}: \\
\textbf{assumes} \\
hby: \forall \ l \in C. \forall \ m \in C. \ |f \ l - f \ m| \leq x \ \text{and} \\
hpC: \ p \in C \ \text{and}
lemma bound-aux:
assumes
 hby: \(\forall \ l \in C. \ \forall \ m \in C. \ |f l - f m| \leq x \) \text{ and} \\
 hpC: p \in C \text{ and} \\
 hqC: q \in C
shows
 |fX f p r - f q| \leq x + \Delta
⟨proof⟩
end

1.4.1 Main theorem

lemma accur-pres:
assumes
 hC: C \subseteq PR and \\
 hby: \(\forall \ l \in C. \ \forall \ m \in C. \ |f l - f m| \leq x \) \text{ and} \\
 hpC: p \in C \text{ and} \\
 hqC: q \in C
shows
 |cfni p f - f q\rangle \leq \left(\text{real card } C \ast x \ast \text{real card } (\{..<np\} - C) \ast (x + \Delta)\right)/\text{real } np \\
 \langle\text{is abs1} \leq (\text{?bC + ?bnpC})/\text{real } np\rangle
⟨proof⟩
end

2 Fault-tolerant Midpoint algorithm

theory LynchInstance imports Complex-Main begin

This algorithm is presented in [5].

2.1 Model of the system

The main ideas for the formalization of the system were obtained from [8].

2.1.1 Types in the formalization

The election of the basics types was based on [8]. There, the process are natural numbers and the real time and the clock readings are reals.

type-synonym process = nat

\text{type-synonym time = real — real time}

\text{type-synonym Clocktime = real — time of the clock readings (clock time)}
2.1.2 Some constants

Here we define some parameters of the algorithm that we use: the number of process and the number of lowest and highest readed values that the algorithm discards. The defined constants must satisfy this axiom. If not, the algorithm cannot obtain the maximum and minimum value, because it will have discarded all the values.

axiomatization

\[
\begin{align*}
np &:: nat \quad \text{Number of processes} \\
khl &:: nat \quad \text{Number of lowest and highest values} \\
\text{constants-ax} &: 2 \ast khl < np
\end{align*}
\]

We define also the set of process that the algorithm manage. This definition exist only for readability matters.

definition

\[
\begin{align*}
PR &:: \text{process set} \\
[\text{simp}] &: PR = \{..<np\}
\end{align*}
\]

2.1.3 Convergence function

This functions is called “Fault-tolerant Midpoint” ([7])

In this algorithm each process has an array where it store the clocks readings from the others processes (including itself). We formalise that as a function from processes to clock time as [8].

First we define two functions. They take a function of clock readings and a set of processes and they return a set of \(khl\) processes which has the greater (smaller) clock readings. They were defined with the Hilbert’s \(\varepsilon\)-operator (the indefinite description operator \(\text{SOME} \) in Isabelle) because in this way the formalization is not fixed to a particular eleccion of the processes’s readings to discards and then the modelization is more general.

definition

\[
\begin{align*}
kmax &:: (\text{process} \Rightarrow \text{Clocktime}) \Rightarrow \text{process set} \Rightarrow \text{process set} \\
kmax f P &= (\text{SOME } S. \ S \subseteq P \land \text{card } S = khl \land \ (\forall \ i\in S. \ \forall \ j\in (P-S). \ f j <= f i))
\end{align*}
\]

definition

\[
\begin{align*}
kmin &:: (\text{process} \Rightarrow \text{Clocktime}) \Rightarrow \text{process set} \Rightarrow \text{process set} \\
kmin f P &= (\text{SOME } S. \ S \subseteq P \land \text{card } S = khl \land \ (\forall \ i\in S. \ \forall \ j\in (P-S). \ f i <= f j))
\end{align*}
\]

With the previus functions we define a new one \(\text{reduce}\). This take a function of clock readings and a set of processes and return de set of readings of the not dicarded processes. In order to define this function we use the image operator \((\text{op }')\) of Isabelle.

\[\text{reduce}: \text{process} \Rightarrow \text{process set} \Rightarrow \text{process set}\]

\[\text{reduce } f P = (\text{SOME } S. \ S \subseteq P \land \text{card } S = \text{number of processes} \land \ (\forall \ i\in S. \ \forall \ j\in (P-S). \ f i <= f j))\]

1The name of this function was taken from [5].
definition
reduce :: (process ⇒ Clocktime) ⇒ process set ⇒ Clocktime set where
reduce f P = f · (P − (kmax f P ∪ kmin f P))

And finally the convergence function. This is defined with the builtin Max
and Min functions of Isabelle.

definition
cfnl :: process ⇒ (process ⇒ Clocktime) ⇒ Clocktime where
cfnl p f = (Max (reduce f PR) + Min (reduce f PR)) / 2

2.2 Translation Invariance property.

2.2.1 Auxiliary lemmas

These lemmas proves the existence of the maximum and minimum of the
image of a set, if the set is finite and not empty.

lemma ex-Maxf:
fixes S and f :: 'a ⇒ ('b::linorder)
assumes fin: finite S
shows S ≠ {} ==> ∃m∈S. ∀s ∈ S. f s ≤ f m
⟨proof⟩

lemma ex-Minf:
fixes S and f :: 'a ⇒ ('b::linorder)
assumes fin: finite S
shows S ≠ {} ==> ∃m∈S. ∀s ∈ S. f m ≤ f s
⟨proof⟩

This trivial lemma is needed by the next two.

lemma khl-bound: khl < np
⟨proof⟩

The next two lemmas prove that de functions kmin and kmax return some
values that satisfy their definition. This is not trivial because we need to
prove the existence of these values, according to the rule of the Hilbert’s
operator. We will need this lemma many times because is the only thing
that we know about these functions.

lemma kmax-prop:
fixes f :: nat ⇒ Clocktime
shows
(kmax f PR) ⊆ PR ∧ card (kmax f PR) = khl ∧
(∀ i∈(kmax f PR). ∀ j∈PR − (kmax f PR). f j ≤ f i)
⟨proof⟩

lemma kmin-prop:
fixes f :: nat ⇒ Clocktime
shows
(kmin f PR) ⊆ PR ∧ card (kmin f PR) = khl ∧
\[(\forall i \in (k_{\min} f \, PR). \, \forall j \in PR - (k_{\min} f \, PR). \, f \, i \leq f \, j)\]

(proof)

The next two lemmas are trivial from the previous ones

lemma finite-kmax:
finite \((k_{\max} f \, PR)\)
(proof)

lemma finite-kmin:
finite \((k_{\min} f \, PR)\)
(proof)

This lemma is necessary because the definition of the convergence function use the builtin Max and Min.

lemma reduce-not-empty:
reduce \(f \, PR \neq \{\}\)
(proof)

The next three are the main lemmas necessary for prove the Translation Invariance property.

lemma reduce-shift:
fixes \(f :: \text{nat} \Rightarrow \text{Clocktime}\)
shows \(f \cdot (PR - (k_{\max} f \, PR \cup k_{\min} f \, PR)) = f \cdot (PR - (k_{\max} (\lambda p. \, f \, p + c) \, PR \cup k_{\min} (\lambda p. \, f \, p + c) \, PR))\)
(proof)

lemma max-shift:
fixes \(f :: \text{nat} \Rightarrow \text{Clocktime} \\ \text{and} \ S\)
assumes \(\text{notEmpFin}: S \neq \{\}\ \text{finite} \ S\)
shows \(\text{Max} \ (f \, S) + x = \text{Max} \ (\lambda p. \, f \, p + x) \, S\)
(proof)

lemma min-shift:
fixes \(f :: \text{nat} \Rightarrow \text{Clocktime} \\ \text{and} \ S\)
assumes \(\text{notEmpFin}: S \neq \{\}\ \text{finite} \ S\)
shows \(\text{Min} \ (f \, S) + x = \text{Min} \ (\lambda p. \, f \, p + x) \, S\)
(proof)

2.2.2 Main theorem

theorem trans-inv:
fixes \(f :: \text{nat} \Rightarrow \text{Clocktime}\)
shows \(cfl \, p \, f \, + \, x = cfl \, p \ (\lambda p. \, f \, p + x)\)
(proof)
2.3 Precision Enhancement property

An informal proof of this theorem can be found in [6]

2.3.1 Auxiliary lemmas

This first lemma is most important for prove the property. This is a consequence of the card-Un-Int lemma.

lemma pigeonhole:

assumes

- finitA: finite A and
- Bss: B ⊆ A and Css: C ⊆ A and
- cardH: card A + k <= card B + card C

shows k <= card (B ∩ C)

(proof)

This lemma is a trivial consequence of the previous one. With only this lemma we can prove the Precision Enhancement property with the bound

\[\pi(x, y) = x + y. \]

But this bound not satisfy the property

\[\pi(2\Lambda + 2\beta\rho, \delta_S + 2\rho(r_{max} + \beta) + 2\Lambda) \leq \delta_S \]

that is used in [8] for prove the Schneider’s schema.

lemma subsets-int:

assumes

- finitA: finite A and
- Bss: B ⊆ A and Css: C ⊆ A and
- cardH: card A < card B + card C

shows B ∩ C ≠ {}

(proof)

This lemma is true because reduce f PR is the image of PR − (kmax f PR ∪ kmin f PR) by the function f.

lemma exist-reduce:

\(\forall c \in \text{reduce } f \text{ PR}. \exists i \in \text{PR} - (kmax f PR \cup kmin f PR). f i = c \)

(proof)

The next three lemmas are consequence of the definition of reduce, kmax and kmin.

lemma finite-reduce:

finite (reduce f PR)

(proof)

lemma kmax-ge:

\(\forall i \in (kmax f PR), \forall r \in (\text{reduce } f \text{ PR}). r <= f i \)

(proof)
lemma $kmin-le$:
\[\forall i \in (kmin f \ PR). \ \forall r \in (reduce f \ PR). \ f \ i \leq r \]
(proof)

The next lemma is used for prove the Precision Enhancement property. This has been proved in ICS. The proof is in the appendix A.1. This cannot be prove by a simple arith or auto tactic.

This lemma is true also with $\theta \leq c$!

lemma $abs-distrib-div$:
\[\theta < (c::real) \implies |a / c - b / c| = |a - b| / c \]
(proof)

The next three lemmas are about the existence of bounds of the values $Max (reduce f \ PR)$ and $Min (reduce f \ PR)$. These are used in the proof of the main property.

lemma $uboundmax$:
assumes
- hC: $C \subseteq PR$ and
- hCk: $np \leq \text{card} \ C + khl$
shows
- $\exists i \in C. \ Max (reduce f \ PR) \leq f \ i$
(proof)

lemma $lboundmin$:
assumes
- hC: $C \subseteq PR$ and
- hCk: $np \leq \text{card} \ C + khl$
shows
- $\exists i \in C. \ f \ i \leq Min (reduce f \ PR)$
(proof)

lemma $same-bound$:
assumes
- hC: $C \subseteq PR$ and
- hCk: $np \leq \text{card} \ C + khl$ and
- hnk: $3 \times khl < np$
shows
- $\exists i \in C. \ Min (reduce f \ PR) \leq f \ i \land g \ i \leq Max (reduce g \ PR)$
(proof)

2.3.2 Main theorem

The most part of this theorem can be proved with CVC-lite using the three previous lemmas (appendix A.2).

theorem $prec-enh$:
assumes
\(hC: C \subseteq PR \) and
\(hCF: np - nF \leq card \ C \) and
\(hFk: 3 \times nF < np \) and
\(hbz: \forall l \in C. |f_l - g_l| \leq x \) and
\(hby1: \forall l \in C. \forall m \in C. |f_l - f_m| \leq y \) and
\(hby2: \forall l \in C. \forall m \in C. |g_l - g_m| \leq y \) and
\(hCpC: p \in C \) and
\(hCqC: q \in C \)
shows \(|cfnl p - cfnl q| \leq y \) / 2 + x
\langle proof \rangle

2.4 Accuracy Preservation property

No new lemmas are needed for prove this property. The bound has been found using the lemmas \texttt{uboundmax} and \texttt{lboundmin}.

This theorem can be proved with ICS and CVC-lite assuming those lemmas (see appendix A.3).

\textbf{theorem} \texttt{accur-pres:}
\textbf{assumes}
\(hC: C \subseteq PR \) and
\(hCF: np - nF \leq card \ C \) and
\(hFk: nF = khl \) and
\(hby: \forall l \in C. \forall m \in C. |f_l - f_m| \leq y \) and
\(hCqC: q \in C \)
shows \(|cfnl p - f_q| \leq y \)
\langle proof \rangle

A CVC-lite and ICS proofs

A.1 Lemma \texttt{abs-distrib-div}

In the proof of the Fault-Tolerant Mid Point Algorithm we need to prove this simple lemma:
\textbf{lemma} \texttt{abs-distrib-div:}
\(\theta < (c::real) \implies |a / c - b / c| = |a - b| / c \)

It is not possible to prove this lemma in Isabelle using \texttt{arith} nor \texttt{auto} tactics. Even if we added lemmas to the default simpset of HOL.

In the translation from Isabelle to ICS we need to change the division by a multiplication because this tools do not accept formulas with this arithmetic operator. Moreover, to translate the absolute value we define \(e \) constant for each application of that function. In ICS it is proved automatically.
It was not possible to find the proof in CVC-lite because the formula is not linear. Two proofs were attempted. In the first one we use lambda abstraction to define the absolute value. The second one is the same translation that we do in ICS.

File abs_distrib_mult.cvc:

File abs_distrib_mult2.cvc:

A.2 Bound for Precision Enhancement property

In order to prove Precision Enhancement for Lynch’s algorithm we need to prove that:

\[
\text{have } |\max (\text{reduce } f \ PR) + \min (\text{reduce } f \ PR) + \\
- \max (\text{reduce } g \ PR) + - \min (\text{reduce } g \ PR)| \leq y + 2 \cdot x
\]

This is the result of the whole theorem where we multiply by two both sides of the inequality.

In order to do the proof we need to translate also the lemmas uboundmax, lboundmin, same_bound (lemmas about the existence of some bounds), the axiom constants_ax and the assumptions of the theorem.

We make five different translations. In each one we where increasing the amount of eliminated quantifiers.

File bound_prec_enh4.cvc:

Note that we leave quantifiers in some assumptions.

In the next file we also try to do the proof with all quantifiers, but CVC cannot find it.

File bound_prec_enh.cvc:

We also try to do the proof removing all quantifiers and the proof was successful.

File bound_prec_enh7.cvc:

From this last file we make the translation also for ICS adding a constant for each application of the absolute value. In this case ICS do not find the proof.

File bound_prec_enh.ics:

A.3 Accuracy Preservation property

The proof of this property was successful in both tools. Even in CVC-lite the proof was find without the need of removing the quantifiers.

File accur_pres.cvc:

File accur_pres.ics:
References

