Compiling Exceptions Correctly

Tobias Nipkow
August 28, 2014

Abstract

An exception compilation scheme that dynamically creates and removes exception handler entries on the stack. A formalization of an article of the same name by Hutton and Wright [1].

1 Compiling exception handling

theory Exceptions
imports Main
begin

1.1 The source language
datatype expr = Val int | Add expr expr | Throw | Catch expr expr
primrec eval :: "expr ⇒ int option"
where
"eval (Val i) = Some i"
"eval (Add x y) = (case eval x of None ⇒ None |
Some i ⇒ (case eval y of None ⇒ None |
Some j ⇒ Some(i+j)))"
"eval Throw = None"
"eval (Catch x h) = (case eval x of None ⇒ eval h | Some i ⇒ Some i)"

1.2 The target language
datatype instr = Push int | ADD | THROW | Mark nat | Unmark | Label nat | Jump nat
datatype item = VAL int | HAN nat
type_synonym code = "instr list"
type_synonym stack = "item list"
fun jump where
"jump 1 [] = []"
lemma size_jump1: "size (jump l cs) < Suc (size cs)"
⟨proof⟩

lemma size_jump2: "size (jump l cs) < size cs ∨ jump l cs = cs"
⟨proof⟩

function (sequential) exec2 :: "bool ⇒ code ⇒ stack ⇒ stack" where
 "exec2 True [] s = s"
 "exec2 True (Push i#cs) s = exec2 True cs (VAL i # s)"
 "exec2 True (ADD#cs) (VAL j # VAL i # s) = exec2 True cs (VAL(i+j) # s)"
 "exec2 True (THROW#cs) s = exec2 False cs s"
 "exec2 True (Mark l#cs) s = exec2 True cs (HAN l # s)"
 "exec2 True (Unmark#cs) (v # HAN l # s) = exec2 True cs (v # s)"
 "exec2 True (Label l#cs) s = exec2 True cs (HAN l # s)"
 "exec2 True (Jump l#cs) s = exec2 True (jump l cs) s"

 "exec2 False cs [] = []"
 "exec2 False cs (VAL i # s) = exec2 False cs s"
 "exec2 False cs (HAN l # s) = exec2 True (jump l cs) s"
⟨proof⟩

termination ⟨proof⟩

abbreviation "exec ≡ exec2 True"
abbreviation "unwind ≡ exec2 False"

1.3 The compiler

primrec compile :: "nat ⇒ expr ⇒ code * nat" where
 "compile l (Val i) = ([Push i], l)"
 "compile l (Add x y) = (let (xs,m) = compile l x; (ys,n) = compile m y
 in (xs @ ys @ [ADD], n))"
 "compile l Throw = ([THROW],l)"
 "compile l (Catch x h) = (let (xs,m) = compile (l+2) x; (hs,n) = compile m h
 in (Mark l # xs @ [Unmark, Jump (l+1), Label l] @ hs @ [Label(l+1)], n))"

abbreviation "cmp :: "nat ⇒ expr ⇒ code" where
 "cmp l e == fst(compile l e)"

primrec isFresh :: "nat ⇒ stack ⇒ bool" where
 "isFresh l [] = True"
 "isFresh l (it#s) = (case it of VAL i ⇒ isFresh l s"
\[HAN' \Rightarrow \text{HAN'} \Rightarrow \text{HAN} \land \text{isFresh l s} \]

Definition
conv :: "code ⇒ stack ⇒ int option ⇒ stack" where
conv cs s i = (case i of None ⇒ unwind cs s
\| Some i ⇒ exec cs (VAL i # s))

1.4 The proofs
Lemma numbers are the same as in the paper.

declare
conv_def[simp] option.splits[split] Let_def[simp]

lemma 3:
"(∀ l. c = Label l =⇒ isFresh l s) =⇒ unwind (c#cs) s = unwind cs s"
(proof)

corollary [simp]:
"(\neg l. c \neq Label l) =⇒ unwind (c#cs) s = unwind cs s"
(proof)

corollary [simp]:
"isFresh l s =⇒ unwind (Label l#cs) s = unwind cs s"
(proof)

lemma 5: "[isFresh l s; l ≤ m] =⇒ isFresh m s"
(proof)

corollary [simp]: "isFresh l s =⇒ isFresh (Suc l) s"
(proof)

lemma 6: "∀ l. l ≤ snd(compile l e)"
(proof)

corollary [simp]: "l < m =⇒ l < snd(compile m e)"
(proof)

corollary [simp]: "isFresh l s =⇒ isFresh (snd(compile l e)) s"
(proof)

Contrary to what the paper says, the proof of lemma 4 does not just need lemma 3 but also the above corollary of 5 and 6. Hence the strange order of the lemmas in our proof.

lemma 4 [simp]: "∀ l cs. isFresh l s =⇒ unwind (cmp l e @ cs) s = unwind cs s"
(proof)

lemma 7 [simp]: "l < m =⇒ jump l (cmp m e @ cs) = jump l cs"
The compiler correctness theorem:

theorem comp_corr:

\[\forall l s cs. \text{isFresh } l s \Rightarrow \text{exec } (\text{cmp } l \ e @ cs) \ s = \text{conv } cs \ s \ (\text{eval } e) \]

proof

The specialized and more readable version (omitted in the paper):

corollary "exec (cmp l e) [] = (case eval e of None ⇒ [] | Some n ⇒ [VAL n])"

proof

end

References