Depth-First Search

Toshiaki Nishihara Yasuhiko Minamide

May 27, 2015

Abstract

Depth-first search of a graph is formalized with function. It is shown that it visits all of the reachable nodes from a given list of nodes. Executable ML code of depth-first search is obtained with code generation feature of Isabelle/HOL. The formalization contains two implementations of depth-first search: one by stack and one by nested recursion. They are shown to be equivalent. The termination condition of the version with nested-recursion is shown by the method of inductive invariants.

Contents

1 Depth-First Search .. 1
 1.1 Definition of Graphs 1
 1.2 Depth-First Search with Stack 2
 1.3 Depth-First Search with Nested-Recursion 3
 1.4 Basic Properties 3
 1.5 Correctness .. 5
 1.6 Executable Code 5

1 Depth-First Search

theory DFS
imports Main
begin

1.1 Definition of Graphs

typedecl node
type-synonym graph = (node * node) list

primrec nexts :: [graph, node] ⇒ node list
where
 nexts [] n = []
 | nexts (e#es) n = (if fst e = n then snd e # nexts es n else nexts es n)
definition nextss :: [graph, node list] ⇒ node set
where nextss g xs = set g "" set xs

lemma nexts-set: y ∈ set (nexts g x) = ((x,y) ∈ set g)
by (induct g) auto

lemma nextss-Cons: nextss g (x#xs) = set (nexts g x) ∪ nextss g xs
unfolding nextss-def by (auto simp add:Image-def nexts-set)

definition reachable :: [graph, node list] ⇒ node set
where reachable g xs = (set g)* "" set xs

1.2 Depth-First Search with Stack

definition nodes-of :: graph ⇒ node set
where nodes-of g = set (map fst g @ map snd g)

lemma [simp]: x /∈ nodes-of g ⇒ nexts g x = []
by (induct g) (auto simp add: nodes-of-def)

lemma [simp]: finite (nodes-of g − set ys)
proof (rule finite-subset)
 show finite (nodes-of g)
 by (auto simp add: nodes-of-def)
qed (auto)

function dfs :: graph ⇒ node list ⇒ node list ⇒ node list
where
 dfs-base: dfs g [] ys = ys
 | dfs-inductive: dfs g (x#xs) ys = (if List.member ys x then dfs g xs ys
 else dfs g (nexts g x@xs) (x#ys))
by pat-completeness auto

termination
apply (relation inv-image (finite-psubset <*lex*> less-than)
 (λ(g,xs,ys). (nodes-of g − set ys, size xs)))
apply auto[1]
apply (simp-all add: finite-psubset-def)
by (case-tac x ∈ nodes-of g) (auto simp add: List.member-def)

- The second argument of dfs is a stack of nodes that will be visited.
- The third argument of dfs is a list of nodes that have been visited already.
1.3 Depth-First Search with Nested-Recursion

function
dfs2 :: graph ⇒ node list ⇒ node list ⇒ node list

where

dfs2 g [] ys = ys
| dfs2-inductive:
 dfs2 g (x#xs) ys = (if List.member ys x then dfs2 g xs ys
 else dfs2 g xs (dfs2 g (nexts g x) (x#ys)))

by pat-completeness auto

lemma dfs2-invariant: dfs2-dom (g, xs, ys) ⇒ set ys ⊆ set (dfs2 g xs ys)
by (induct g xs ys rule: dfs2.pinduct) (force simp add: dfs2.psimp)+

termination dfs2
apply (relation inv-image (finite-psubset <*lex*> less-than)
 (λ(g,xs,ys). (nodes-of g - set ys, size xs)))
apply auto[1]
apply (simp-all add: finite-psubset-def)
apply (case-tac x ∈ nodes-of g)
apply (auto simp add: List.member-def)[2]
by (insert dfs2-invariant) force

lemma dfs-app: dfs g (xs@ys) zs = dfs g ys (dfs g xs zs)
by (induct g xs zs rule: dfs.induct) auto

lemma dfs g xs ys = dfs g xs ys
by (induct g xs ys rule: dfs2.induct) (auto simp add: dfs-app)

1.4 Basic Properties

lemma visit-subset-dfs: set ys ⊆ set (dfs g xs ys)
by (induct g xs ys rule: dfs.induct) auto

lemma next-subset-dfs: set xs ⊆ set (dfs g xs ys)
proof (induct g xs ys rule:dfs.induct)
case (2 g x xs ys)
 show ?case
 proof (cases x ∈ set ys)
 case True
 have set ys ⊆ set (dfs g xs ys)
 by (rule visit-subset-dfs)
 with 2 and True show ?thesis
 by (auto simp add: List.member-def)
 next
 case False
 have set (x#ys) ⊆ set (dfs g (nexts g x @ xs) (x#ys))
 by (rule visit-subset-dfs)
with 2 and False show ?thesis
 by (auto simp add: List.member-def)
qed
qed(auto)

lemma nextss-closed-dfs'[rule-format]:
nextss g ys ⊆ set xs ∪ set ys → nextss g (dfs g xs ys) ⊆ set (dfs g xs ys)
by (induct g xs ys rule:dfs.induct, auto simp add:nextss-Cons List.member-def)

lemma nextss-closed-dfs: nextss g (dfs g xs []) ⊆ set (dfs g xs [])
by (rule nextss-closed-dfs', simp add: nextss-def)

lemma Image-closed-trancl: assumes r "" X ⊆ X shows r* "" X = X
proof
 show r* "" X ⊆ X
 proof
 { fix x y
 assume y: y ∈ X
 assume (y,x) ∈ r*
 then have x ∈ X
 by (induct) (insert assms y, auto simp add: Image-def)
 }
 then show ?thesis unfolding Image-def by auto
 qed
qed(auto)

lemma reachable-closed-dfs: reachable g xs ⊆ set(dfs g xs [])
proof
 have reachable g xs ⊆ reachable g (dfs g xs [])
 unfolding reachable-def by (rule Image-mono) (auto simp add: next-subset-dfs)
 also have ... = set(dfs g xs [])
 unfolding reachable-def
 proof (rule Image-closed-trancl)
 from nextss-closed-dfs
 show set g "" set (dfs g xs []) ⊆ set (dfs g xs [])
 by (simp add: nextss-def)
 qed
 finally show ?thesis .
qed

lemma reachable-nexts: reachable g (nexts g x) ⊆ reachable g [x]
 unfolding reachable-def
 by (auto intro: converse-rtrancl-into-rtrancl simp: nexts-set)

lemma reachable-append: reachable g (xs @ ys) = reachable g xs ∪ reachable g ys
 unfolding reachable-def by auto
lemma dfs-subset-reachable-visit-nodes: \(\text{set} (\text{dfs}\ g\ \text{xs}\ \text{ys}) \subseteq \text{reachable}\ g\ \text{xs} \cup \text{set}\ \text{ys} \)
proof (induct g xs ys rule: dfs.induct)
 case 1
 then show ?case by simp
next
case (2 \ g \ x \ x s \ y s)
 show ?case
 proof (cases \ x \in \text{set}\ \text{ys})
 case True
 with 2 show \text{set} (\text{dfs}\ g\ (x\#xs)\ \text{ys}) \subseteq \text{reachable}\ g\ (x\#xs) \cup \text{set}\ \text{ys}
 by (auto simp add: reachable-def List.member-def)
 next
 have \text{reachable}\ g\ (\text{nexts}\ g\ x) \subseteq \text{reachable}\ g\ [x]
 by (rule reachable-nexts)
 hence a: \text{reachable}\ g\ (\text{nexts}\ g\ x\ @\ x s) \subseteq \text{reachable}\ g\ (x\#xs)
 by (simp add: reachable-append, auto simp add: reachable-def)
 with False 2
 show \text{set} (\text{dfs}\ g\ (x\#xs)\ \text{ys}) \subseteq \text{reachable}\ g\ (x\#xs) \cup \text{set}\ \text{ys}
 by (auto simp add: reachable-def List.member-def) blast
 qed
qed

1.5 Correctness

theorem dfs-eq-reachable: \text{set} (dfs g xs []) = \text{reachable}\ g\ \text{xs}
proof
 have \text{set} (dfs g xs []) \subseteq \text{reachable}\ g\ \text{xs} \cup \text{set}\ []
 by (rule dfs-subset-reachable-visit-nodes[of g xs []])
 thus \text{set} (dfs g xs []) \subseteq \text{reachable}\ g\ \text{xs}
 by simp
qed (rule reachable-closed-dfs)

theorem y \in \text{set} (dfs g [x] []) = ((x, y) \in (set\ g)^*)
by (simp only: dfs-eq-reachable reachable-def, auto)

1.6 Executable Code

consts Node :: int ⇒ node
code-datatype Node

instantiation node :: equal
begin

definition equal-node :: node ⇒ node ⇒ bool
where [code del]: equal-node = HOL.eq
instance proof
qed (simp add: equal-node-def)
end

declare [[code abort: HOL.equal :: node ⇒ node ⇒ bool]]

export-code dfs dfs2 in SML file dfs.ML
end