Depth-First Search

Toshiaki Nishihara Yasuhiko Minamide

May 27, 2015

Abstract

Depth-first search of a graph is formalized with function. It is shown that it visits all of the reachable nodes from a given list of nodes. Executable ML code of depth-first search is obtained with code generation feature of Isabelle/HOL. The formalization contains two implementations of depth-first search: one by stack and one by nested recursion. They are shown to be equivalent. The termination condition of the version with nested-recursion is shown by the method of inductive invariants.

Contents

1 Depth-First Search 1
 1.1 Definition of Graphs .. 1
 1.2 Depth-First Search with Stack 2
 1.3 Depth-First Search with Nested-Recursion 2
 1.4 Basic Properties ... 3
 1.5 Correctness .. 4
 1.6 Executable Code ... 4

1 Depth-First Search

theory DFS
imports Main
begin

1.1 Definition of Graphs

typedecl node
type-synonym graph = (node * node) list

primrec nexts :: [graph, node] ⇒ node list
where
 nexts [] n = []
| nexts (e#es) n = (if fst e = n then snd e # nexts es n else nexts es n)

1
1.2 Depth-First Search with Stack

definition nodes-of :: graph ⇒ node set
where nodes-of g = set (map fst g @ map snd g)

lemma [simp]: x /∈ nodes-of g =⇒ nexts g x = []
⟨proof⟩

lemma [simp]: finite (nodes-of g − set ys)
⟨proof⟩

function
dfs :: graph ⇒ node list ⇒ node list ⇒ node list
where
dfs-base: dfs g [] ys = ys
| dfs-inductive: dfs g (x#xs) ys = (if List.member ys x then dfs g xs ys
else dfs g (nexts g x@xs) (x#ys))
⟨proof⟩

termination
⟨proof⟩

- The second argument of dfs is a stack of nodes that will be visited.
- The third argument of dfs is a list of nodes that have been visited already.

1.3 Depth-First Search with Nested-Recursion

function
dfs2 :: graph ⇒ node list ⇒ node list ⇒ node list
where
dfs2 g [] ys = ys
| dfs2-inductive:
dfs2 g (x#xs) ys = (if List.member ys x then dfs2 g xs ys

2
* else dfs2 g xs (dfs2 g (nexts g x) (x#ys))

(proof)

** lemma dfs2-invariant: dfs2-dom (g, xs, ys) \(\implies\) set ys \(\subseteq\) set (dfs2 g xs ys)

(proof)

** termination dfs2

(proof)

** lemma dfs-app: dfs g (xs@ys) zs = dfs g ys (dfs g xs zs)

(proof)

** lemma dfs2 g xs ys = dfs g xs ys

(proof)

1.4 Basic Properties

** lemma visit-subset-dfs: set ys \(\subseteq\) set (dfs g xs ys)

(proof)

** lemma next-subset-dfs: set xs \(\subseteq\) set (dfs g xs ys)

(proof)

** lemma nextss-closed-dfs[rule-format]:

nextss g ys \(\subseteq\) set xs \(\cup\) set ys \(\implies\) nextss g (dfs g xs ys) \(\subseteq\) set (dfs g xs ys)

(proof)

** lemma nextss-closed-dfs: nextss g (dfs g xs []) \(\subseteq\) set (dfs g xs [])

(proof)

** lemma Image-closed-trancl: assumes r "" X \(\subseteq\) X shows r*= "" X = X

(proof)

** lemma reachable-closed-dfs: reachable g xs \(\subseteq\) set (dfs g xs [])

(proof)

** lemma reachable-nexts: reachable g (nexts g x) \(\subseteq\) reachable g [x]

(proof)

** lemma reachable-append: reachable g (xs @ ys) = reachable g xs \(\cup\) reachable g ys

(proof)

** lemma dfs-subset-reachable-visit-nodes: set (dfs g xs ys) \(\subseteq\) reachable g xs \(\cup\) set ys

(proof)
1.5 Correctness

theorem dfs-eq-reachable: set (dfs g xs []) = reachable g xs

(\textit{proof})

theorem $y \in \text{set} \ (dfs \ g \ [x] \ []) = ((x,y) \in (\text{set} \ g)^*)$

(\textit{proof})

1.6 Executable Code

consts Node :: int ⇒ node

code-datatype Node

instantiation node :: equal

begin

definition equal-node :: node ⇒ node ⇒ bool

where

[code del]: equal-node = HOL.eq

instance (\textit{proof})

end

declare [[code abort: HOL.equal :: node ⇒ node ⇒ bool]]

export-code dfs dfs2 in SML file dfs.ML

end