Abstract
This theory provides functions for finding the index of an element in a list, by predicate and by value.

theory List-Index imports Main begin
This theory collects functions for index-based manipulation of lists.

0.1 Finding an index
This subsection defines three functions for finding the index of items in a list:

\(\text{find-index } P \, xs \) finds the index of the first element in \(xs \) that satisfies \(P \).

\(\text{index } xs \, x \) finds the index of the first occurrence of \(x \) in \(xs \).

\(\text{last-index } xs \, x \) finds the index of the last occurrence of \(x \) in \(xs \).

All functions return \(\text{length } xs \) if \(xs \) does not contain a suitable element.

The argument order of \(\text{find-index} \) follows the function of the same name in the Haskell standard library. For \(\text{index} \) (and \(\text{last-index} \)) the order is intentionally reversed: \(index \) maps lists to a mapping from elements to their indices, almost the inverse of function \(\text{nth} \).

\textbf{primrec} \(\text{find-index} :: \ ('a \Rightarrow \text{bool}) \Rightarrow \ 'a \ list \Rightarrow \text{nat} \) where
\(\text{find-index} \, \text{[]} = 0 \ |
\(\text{find-index} \, P \, (x \# xs) = (\text{if } P \, x \text{ then } 0 \text{ else } \text{find-index} \, P \, xs + 1) \)

\textbf{definition} \(\text{index} :: \ 'a \ list \Rightarrow \ 'a \Rightarrow \text{nat} \) where
\(\text{index} \, xs = (\lambda a. \text{find-index} \, (\lambda x. \, x=a) \, xs) \)

\textbf{definition} \(\text{last-index} :: \ 'a \ list \Rightarrow \ 'a \Rightarrow \text{nat} \) where
\(\text{last-index} \, xs \, x =
\text{(let } i = \text{index} \, (\text{rev} \, xs) \, x; n = \text{size} \, xs
\text{ in if } i = n \text{ then } i \text{ else } n - (i+1)) \)
lemma find-index-le-size: find-index P xs <= size xs
by(induct xs) simp-all

lemma index-le-size: index xs x <= size xs
by(simp add: index-def find-index-le-size)

lemma last-index-le-size: last-index xs x <= size xs
by(simp add: last-index-def Let-def index-le-size)

lemma index-Nil[simp]: index [] a = 0
by(simp add: index-def)

lemma index-Cons[simp]: index (x#xs) a = (if x=a then 0 else index xs a + 1)
by(simp add: index-def)

lemma index-append: index (xs @ ys) x =
 (if x : set xs then index xs x else size xs + index ys x)
by (induct xs) simp-all

lemma index-conv-size-if-notin[simp]: x /∈ set xs ⇒ index xs x = size xs
by (induct xs) auto

lemma find-index-eq-size-conv: size xs = n ⇒ (find-index P xs = n) = (ALL x : set xs. ~ P x)
by(induct xs arbitrary: n) auto

lemma size-eq-find-index-conv: size xs = n ⇒ (n = find-index P xs) = (ALL x : set xs. ~ P x)
by(metis find-index-eq-size-conv)

lemma index-size-conv: size xs = n ⇒ (index xs x = n) = (x /∈ set xs)
by (metis index-size-conv)

lemma size-index-conv: size xs = n ⇒ (n = index xs x) = (x /∈ set xs)
by (metis size-index-conv)

lemma last-index-size-conv: size xs = n ⇒ (last-index xs x = n) = (x /∈ set xs)
apply(auto simp: last-index-def index-size-conv)
apply(drule length-pos-if-in-set)
apply arith
apply arith
done

lemma size-last-index-conv: size xs = n ⇒ (n = last-index xs x) = (x /∈ set xs)
by (metis last-index-size-conv)

lemma find-index-less-size-conv:
(find-index P xs < size xs) = (EX x : set xs, P x)
by (induct xs) auto

lemma index-less-size-conv:
(index xs x < size xs) = (x ∈ set xs)
by(auto simp: index-def find-index-less-size-conv)

lemma last-index-less-size-conv:
(last-index xs x < size xs) = (x : set xs)
by(simp add: last-index-def Let-def index-size-conv length-pos-if-in-set
 del:length-greater-0-conv)

lemma index-less[simp]:
x : set xs ⇒ size xs <= n ⇒ index xs x < n
apply(induct xs) apply auto
apply (metis index-less-size-conv less-eq-Suc-le less-trans-Suc)
done

lemma last-index-less[simp]:
x : set xs ⇒ size xs <= n ⇒ last-index xs x < n
by(simp add: last-index-less-size-conv[symmetric])

lemma last-index-Cons: last-index (x#xs) y =
 (if x=y then
 if x ∈ set xs then last-index xs y + 1 else 0
 else last-index xs y + 1)
using index-le-size[of rev xs y]
apply(auto simp add: last-index-def index-append Let-def)
apply(simp add: index-size-conv)
done

lemma last-index-append: last-index (xs @ ys) x =
 (if x : set ys then size xs + last-index ys x
 else if x : set xs then last-index xs x else size xs + size ys)
by (induct xs) (simp-all add: last-index-Cons last-index-size-conv)

lemma last-index-Snoc[simp]:
last-index (xs @ [x]) y =
 (if x=y then size xs
 else if y : set xs then last-index xs y else size xs + 1)
by(simp add: last-index-append last-index-Cons)

lemma nth-find-index: find-index P xs < size xs ⇒ P(xs ! find-index P xs)
by (induct xs) auto

lemma nth-index[simp]: x ∈ set xs ⇒ xs ! index xs x = x
by (induct xs) auto

lemma nth-last-index[simp]: x ∈ set xs ⇒ xs ! last-index xs x = x
by (simp add: last-index-def index-size-conv Let-def rev-nth[symmetric])

lemma index-nth-id:
[distinct xs; n < length xs] ⟹ index xs (xs ! n) = n
by (metis in-set-conv-nth index-less-size-conv nth-eq-iff-index-eq nth-index)

lemma index-upt[simp]: m ≤ i ⟹ i < n ⟹ index [m..<n] i = i − m
by (induction n) (auto simp add: index-append)

lemma index-eq-index-conv[simp]: x ∈ set xs ∨ y ∈ set xs ⟹ (index xs x = index xs y) = (x = y)
by (induct xs) auto

lemma last-index-eq-index-conv[simp]: x ∈ set xs ∨ y ∈ set xs ⟹ (last-index xs x = last-index xs y) = (x = y)
by (induct xs) (auto simp: last-index-Cons)

lemma inj-on-index: inj-on (index xs) (set xs)
by (simp add: inj-on-def)

lemma inj-on-index2: I ⊆ set xs ⟹ inj-on (index xs) I
by (rule inj-onI) auto

lemma inj-on-last-index: inj-on (last-index xs) (set xs)
by (simp add: inj-on-def)

lemma index-conv-takeWhile: index xs x = size(takeWhile (λ y. x ≠ y) xs)
by (induct xs) auto

lemma index-take: index xs x >= i ⟹ x ∉ set(take i xs)
apply (subst (asm) index-conv-takeWhile)
apply (subgoal-tac set(take i xs) <= set(takeWhile (op ≠ x) xs))
apply (blast dest: set-takeWhileD)
apply (metis set-take-subset-set-take takeWhile-eq-take takeWhile-antisym)
done

lemma last-index-drop:
last-index xs x < i ⟹ x ∉ set(drop i xs)
apply (subgoal-tac set(drop i xs) = set(take (size xs − i) (rev xs)))
apply (simp add: last-index-def index-take Let-def rev-nth[symmetric])
apply (metis rev-drop set-rev)
done

lemma set-take-if-index: assumes index xs x < i and i ≤ length xs shows x ∈ set (take i xs)
proof –
have index (take i xs @ drop i xs) x < i
 using append-take-drop-id[of i xs] assms(1) by simp
thus ?thesis using assms(2)
lemma index-take-if-index:
assumes index xs x ≤ n shows index (take n xs) x = index xs x
proof cases
 assume x : set(take n xs) with assms showthesis
 by (metis append-take-drop-id index-append)
next
 assume x /∈ set(take n xs) with assms showthesis
 by (metis order-le-less set-take-if-index le-cases length-take min-def size-index-conv)
qed

lemma index-take-if-set:
x : set(take n xs) =⇒ index (take n xs) x = index xs x
by (metis index-take index-take-if-index linear)

lemma index-last[simp]:
xs ≠ [] =⇒ distinct xs =⇒ index xs (last xs) = length xs - 1
by (induction xs) auto

lemma index-update-if-diff2:
 n < length xs =⇒ x ≠ xs!n =⇒ x ≠ y =⇒ index (xs[n := y]) x = index xs x
by(subst (2) id-take-nth-drop[of n xs])
 (auto simp: upd-conv-take-nth-drop index-append min-def)

lemma set-drop-if-index:
distinct xs =⇒ index xs x < i =⇒ x /∈ set(drop i xs)
by (metis in-set-dropD index-nth-id last-index-drop last-index-less-size-conv nth-last-index)

lemma index-swap-if-distinct: assumes distinct xs i < size xs j < size xs
shows index (xs[i := xs!j, j := xs!i]) x =
 (if x = xs!i then j else if x = xs!j then i else index xs x)
proof−
 have distinct(xs[i := xs!j, j := xs!i]) using assms by simp
 with assms showthesis
 apply (auto simp: swap-def simp del: distinct-swap)
 apply (metis index-nth-id list-update-same-conv)
 apply (metis (erased, hide-lams) index-nth-id length-list-update list-update-swap nth-list-update-conv)
 apply (metis index-nth-id length-list-update nth-list-update-eq)
 by (metis index-update-if-diff2 length-list-update nth-list-update)
qed

lemma bij-betw-index:
distinct xs =⇒ X = set xs =⇒ l = size xs =⇒ bij-betw (index xs) X {0..<l}
apply simp
apply(rule bij-betw-imageI[OF inj-on-index])
by (auto simp: image-def) (metis index-nth-id nth-mem)
lemma index-image: distinct xs → set xs = X ⊆ index xs = X = {0..<size xs}
by (simp add: bij-betw-imageE bij-betw-index)

0.2 Map with index

primrec map-index': :: nat ⇒ (nat ⇒ 'a ⇒ 'b) ⇒ 'a list ⇒ 'b list where
map-index' n f [] = []
| map-index' n f (x#xs) = f n x # map-index' (Suc n) f xs

lemma length-map-index': simp: length (map-index' n f xs) = length xs
by (induct xs arbitrary: n) auto

lemma map-index'-map-zip: map-index' n f xs = map (split f) (zip [n ..< n + length xs] xs)
proof (induct xs arbitrary: n)
case (Cons x xs)
also have . . . = map (split f) (zip [Suc n ..< n + length (x # xs)] (x # xs)) by simp
also have (n # [Suc n ..< n + length (x # xs)]) = [n ..< n + length (x # xs)]
by (induct xs) auto
finally show ?case by simp
qed simp

abbreviation map-index ≡ map-index' 0

lemmas map-index = map-index'-map-zip[of 0, simplified]

lemma take-map-index: take p (map-index f xs) = map-index f (take p xs)
unfolding map-index by (auto simp: min-def take-map take-zip)

lemma drop-map-index: drop p (map-index f xs) = map-index' p f (drop p xs)
unfolding map-index'-map-zip by (cases p < length xs) (auto simp: drop-map drop-zip)

lemma map-map-index[simp]: map g (map-index f xs) = map-index (λn x. g (f n x)) xs
unfolding map-index by auto

lemma map-index-map[simp]: map-index f (map g xs) = map-index (λn x. f n (g x)) xs
unfolding map-index by (auto simp: map-zip-map2)

lemma set-map-index[simp]: x ∈ set (map-index f xs) = (∃ i < length xs. f i (xs ! i) = x)
unfolding map-index by (auto simp: set-zip intro!: image-eqI[of - split f])
lemma set-map-index'[simp]: x∈set (map-index' n f xs) ←→ (∃i<length xs. f (n+i) (xs!i) = x)
unfolding map-index'-map-zip
by (auto simp: set-zip intro: image-eqI[of - split f])

lemma nth-map-index'[simp]: p < length xs ⇒ map-index f xs ! p = f p (xs ! p)
unfolding map-index' by auto

lemma map-index-cong:
∀ p < length xs. f p (xs ! p) = g p (xs ! p) ⇒ map-index f xs = map-index g xs
unfolding map-index' by (auto simp: set-zip)

lemma map-index-id: map-index (curry snd) xs = xs
unfolding map-index' by auto

lemma map-index-no-index'[simp]: map-index (λn. f x) xs = map f xs
unfolding map-index' by (induct xs rule: rev-induct) auto

lemma map-index'−is-NilD: map-index' n f xs = [] ⇒ xs = []
by (induct xs) auto

declare map-index'−is-NilD[of 0, dest!]

lemma map-index'−is-ConsD:
map-index' n f zs = y # ys ⇒ (∃z zs. zs = z # zs ∧ f n z = y ∧ map-index' (n + 1) f zs = ys)
by (induct xs arbitrary: n) auto

lemma map-index'−eq-imp-length-eq: map-index' n f xs = map-index' n g ys ⇒ length xs = length ys
proof (induct ys arbitrary: xs n)
 case (Cons y ys) thus ?case by (cases xs) auto
qed (auto dest!: map-index'−is-NilD)

lemmas map-index'−eq-imp-length-eq = map-index'−eq-imp-length-eq[of 0]

lemma map-index'−comp[simp]: map-index' n f (map-index' n g xs) = map-index' n (λn. f o g n) xs
by (induct xs arbitrary: n) auto

lemma map-index'−append[simp]: map-index' n f (a @ b) = map-index' (n + length a) f b
by (induct a arbitrary: n) auto
lemma map-index-append[simp]: map-index f (a @ b) = map-index f a @ map-index’ (length a) f b
using map-index’-append[where n=0]
by (simp del: map-index’-append)

0.3 Insert at position
primrec insert-nth :: nat ⇒ ‘a ⇒ ‘a list ⇒ ‘a list where
insert-nth 0 x xs = x # xs
| insert-nth (Suc n) x xs = (case xs of [] ⇒ [x] | y # ys ⇒ y # insert-nth n x ys)

lemma insert-nth-take-drop[simp]:
insert-nth n x xs = take n xs @ [x] @ drop n xs
proof (induct n arbitrary: xs)
case Suc thus ?case by (cases xs) auto
qed simp

lemma length-insert-nth:
length (insert-nth n x xs) = Suc (length xs)
by (induct xs) auto

Insert several elements at given (ascending) positions

lemma length-fold-insert-nth:
length (fold (λ(p, b). insert-nth p b) pxs xs) = length xs + length pxs
by (induct pxs arbitrary: xs) auto

lemma invar-fold-insert-nth:
[∀ x∈set pxs. p < fst x; p < length xs; xs ! p = b] ⊢
fold (λ(x, y). insert-nth x y) pxs xs ! p = b
by (induct pxs arbitrary: xs) (auto simp: nth-append)

lemma nth-fold-insert-nth:
[sorted (map fst pxs); distinct (map fst pxs); ∀ (p, b) ∈ set pxs. p < length xs + length pxs;
 i < length pxs; pxs ! i = (p, b)] ⊢
fold (λ(p, b). insert-nth p b) pxs xs ! p = b
proof (induct pxs arbitrary: xs i p b)
case (Cons pb pxs)
show ?case
proof (cases i)
case 0
with Cons.prems have p < Suc (length xs)
proof (induct pxs rule: rev-induct)
case (snoc pb’ pxs)
then obtain p’ b’ where pb’ = (p’, b’) by auto
with snoc.prems have ∀ p ∈ fst ‘ set pxs. p < p’ p’ ≤ Suc (length xs + length pxs)
by (auto simp: image-iff sorted-Cons sorted-append le-eq-less-or-eq)
with snoc.prems show ?case by (intro snoc(1)) (auto simp: sorted-Cons sorted-append)
qed auto
with 0 Cons.prems show ?thesis unfolding fold.simps o-apply
 by (intro invar-fold-insert-nth) (auto simp: sorted-Cons image-iff le-eq-less-or-eq nth-append)
next
 case (Suc n) with Cons.prems show ?thesis unfolding fold.simps
 by (auto intro!: Cons(1) simp: sorted-Cons)
qed
qed simp

end