Isabelle/Circus

Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel
and Burkhart Wolff

September 19, 2015

Abstract

The Circus specification language combines elements for complex
data and behavior specifications, using an integration of Z and CSP
with a refinement calculus. Its semantics is based on Hoare and He’s
unifying theories of programming (UTP).

Isabelle/Circus is a formalization of the UTP and the Circus lan-
guage in Isabelle/HOL. It contains proof rules and tactic support that
allows for proofs of refinement for Circus processes (involving both
data and behavioral aspects).

This environment supports a syntax for the semantic definitions
which is close to textbook presentations of Circus.

These theories are presented with details in [9]. This document is
a technical appendix of this report.

Contents

1 Introduction 5

2 Background 6

2.1 Isabelle, HOL and Isabelle/HOL 6

2.1.1 isar 6

2.1.2 Higher-order logic (HOL) 6

2.1.3 Isabelle/HOL 6

2.2 Advanced Specification Constructs in Isabelle/HOL 6

2.2.1 Constant definitions. 6

2.2.2 Type definitions. 7

2.2.3 Extensible records. 7

2.3 Circus and its UTP Foundation 8

2.3.1 Predicates and Relations. 8

2.3.2 Designs and processes. 9
Isabelle/Circus

3.1 Alphabets and Variables ... 11
3.1.1 Updating and accessing global variables. 11
3.1.2 Updating and accessing local variables. 12
3.2 Synchronization infrastructure: Name sets and channels. . . . 13
3.2.1 Name sets. .. 13
3.2.2 Channels. ... 13
3.3 Actions and Processes .. 14
3.3.1 Basic actions. .. 15
3.3.2 The universal assignment action. 15
3.3.3 Communications. 16
3.3.4 Hiding. .. 17
3.3.5 Recursion. ... 18
3.3.6 Circus Processes. 18

4 Using Isabelle/Circus .. 18
4.1 Writing specifications ... 19
4.2 Relational and Functional Refinement in Circus 20
4.3 Refinement Proofs .. 20

5 Conclusions .. 22

6 Acknowledgement ... 23

7 UTP variables .. 24

8 Predicates and relations .. 24
8.1 Definitions .. 24
8.2 Proofs ... 26
8.2.1 Setup of automated tools 26
8.2.2 Misc lemmas .. 28

9 Designs ... 34
9.1 Definitions .. 34
9.2 Proofs ... 35

10 Reactive processes .. 38
10.1 Preliminaries ... 38
10.2 Definitions ... 41
10.3 Proofs .. 42

11 CSP processes .. 47
11.1 Definitions .. 47
11.2 Proofs .. 48
11.3 CSP processes and reactive designs 54
12 Circus actions
12.1 Definitions .. 56
12.2 Proofs .. 56

13 Circus variables

14 Denotational semantics of Circus actions
14.1 Skip .. 67
14.2 Stop .. 69
14.3 Chaos .. 70
14.4 State update actions 71
14.5 Sequential composition 74
14.6 Internal choice ... 74
14.7 External choice ... 75
14.8 Reactive design assignment 76
14.9 Local state external choice 76
14.10 Schema expression 76
14.11 Parallel composition 77
14.12 Local parallel block 79
14.13 Assignment .. 79
14.14 Variable scope ... 80
14.15 Guarded action ... 83
14.16 Prefixed action ... 85
14.17 Hiding .. 87
14.18 Recursion ... 89

15 Circus syntax ... 89

16 Refinement and Simulation
16.1 Definitions .. 98
16.2 Proofs .. 98

17 Concrete example ... 105
17.1 Process definitions 105
17.2 Simulation proofs 106
1 Introduction

Many systems involve both complex (sometimes infinite) data structures and interactions between concurrent processes. Refinement of abstract specifications of such systems into more concrete ones, requires an appropriate formalisation of refinement and appropriate proof support.

There are several combinations of process-oriented modeling languages with data-oriented specification formalisms such as Z or B or CASL; examples are discussed in [3, 10, 17, 14]. In this paper, we consider Circus [18], a language for refinement, that supports modeling of high-level specifications, designs, and concrete programs. It is representative of a class of languages that provide facilities to model data types, using a predicate-based notation, and patterns of interactions, without imposing architectural restrictions. It is this feature that makes it suitable for reasoning about both abstract and low-level designs.

We present a “shallow embedding” of the Circus semantics enabling state variables and channels in Circus to have arbitrary HOL types. Therefore, the entire handling of typing can be completely shifted to the (efficiently implemented) Isabelle type-checker and is therefore implicit in proofs. This drastically simplifies definitions and proofs, and makes the reuse of standardized proof procedures possible. Compared to implementations based on a “deep embedding” such as [19] this significantly improves the usability of the resulting proof environment.

Our representation brings particular technical challenges and contributions concerning some important notions about variables. The main challenge was to represent alphabets and bindings in a typed way that preserves the semantics and improves deduction. We provide a representation of bindings without an explicit management of alphabets. However, the representation of some core concepts in the unifying theories of programming (UTP) and Circus constructs (variable scopes and renaming) became challenging. Thus, we propose a (stack-based) solution that allows the coding of state variables scoping with no need for renaming. This solution is even a contribution to the UTP theory that does not allow nested variable scoping. Some challenging and tricky definitions (e.g. channels and name sets) are explained in this paper.

This paper is organized as follows. The next section gives an introduction to the basics of our work: Isabelle/HOL, UTP and Circus with a short example of a Circus process. In Section 3, we present our embedding of the basic concepts of Circus (alphabet, variables ...). We introduce the representation of some Circus actions and process, with an overview of the Isabelle/Circus syntax. In Section 4, we show on an example, how Isabelle/Circus can be used to write specifications. We give some details on what is happening “behind the scenes” when the system parses each part of the specification. In the last part of this section, we show how to write proofs based on spec-
ifications, and give a refinement proof example. A more developed version of this paper can be found in [9].

2 Background

2.1 Isabelle, HOL and Isabelle/HOL

2.1.1 isar

[12] is a generic theorem prover implemented in SML. It is based on the so-called “LCF-style architecture”, which makes it possible to extend a small trusted logical kernel by user-programmed procedures in a logically safe way. New object logics can be introduced to Isabelle by specifying their syntax and semantics, by deriving its inference rules from there and program specific tactic support for the object logic. Isabelle is based on a typed \(\lambda \)-calculus including a Haskell-style type-system with type-classes (e.g. in \(\alpha \) :: order, the type-variable ranges over all types that posses a partial ordering.)

2.1.2 Higher-order logic (HOL)

[7, 1] is a classical logic based on a simple type system. It provides the usual logical connectives like \(\land \), \(\rightarrow \), \(\neg \) as well as the object-logical quantifiers \(\forall x \bullet P x \) and \(\exists x \bullet P x \); in contrast to first-order logic, quantifiers may range over arbitrary types, including total functions \(f :: \alpha \Rightarrow \beta \). HOL is centered around extensional equality \(= : \alpha \Rightarrow \alpha \Rightarrow \text{bool} \). HOL is more expressive than first-order logic, since, e.g., induction schemes can be expressed inside the logic. Being based on some polymorphically typed \(\lambda \)-calculus, HOL can be viewed as a combination of a programming language like SML or Haskell and a specification language providing powerful logical quantifiers ranging over elementary and function types.

2.1.3 Isabelle/HOL

is an instance of Isabelle with higher-order logic. It provides a rich collection of library theories like sets, pairs, relations, partial functions lists, multi-sets, orderings, and various arithmetic theories which only contain rules derived from conservative, i.e. logically safe definitions. Setups for the automated proof procedures like \texttt{simp}, \texttt{auto}, and arithmetic types such as \texttt{int} are provided.

2.2 Advanced Specification Constructs in Isabelle/HOL

2.2.1 Constant definitions.

In its easiest form, constant definitions are definitional logical axioms of the form \(c \equiv E \) where \(c \) is a fresh constant symbol not occurring in \(E \) which is
closed (both wrt. variables and type variables). For example:

\begin{verbatim}
definition upd::\((\alpha\Rightarrow\beta)\Rightarrow\alpha\Rightarrow\beta\Rightarrow(\alpha\Rightarrow\beta)\)
 "__ := __(_)")
where "upd f x v \equiv \lambda z. if x=z then v else f z"
\end{verbatim}

The pragma ("__ := __(_)") for the Isabelle syntax engine introduces the notation \(f(x:=y)\) for \(\text{upd } f x y\). Moreover, some elaborate preprocessing allows for recursive definitions, provided that a termination ordering can be established. Such recursive definitions are thus internally reduced to definitional axioms.

2.2.2 Type definitions.

Types can be introduced in Isabelle/HOL in different ways. The most general way to safely introduce new types is using the \texttt{typedef} construct. This allows introducing a type as a non-empty subset of an existing type. More precisely, the new type is specified to be isomorphic to this non-empty subset. For instance:

\begin{verbatim}
typedef mytype = "{x::nat. x < 10}"\end{verbatim}

This definition requires that the set is non-empty: \(\exists x. x \in \{x::nat. x<10\}\), which is easy to prove in this case:

\begin{verbatim}
by (rule_tac x = 1 in exI, simp)\end{verbatim}

where \texttt{rule_tac} is a tactic that applies an introduction rule, and \texttt{exI} corresponds to the introduction of the existential quantification.

Similarly, the \texttt{datatype} command allows the definition of inductive datatypes. It introduces a datatype using a list of constructors. For instance, a logical compiler is invoked for the following introduction of the type \texttt{option}:

\begin{verbatim}
datatype \alpha option = None | Some \alpha\end{verbatim}

which generates the underlying type definition and derives distinctness rules and induction principles. Besides the constructors \texttt{None} and \texttt{Some}, the following match-operator and his rules are also generated:

\begin{verbatim}
 case x of None \Rightarrow \ldots | Some a\Rightarrow \ldots\end{verbatim}

2.2.3 Extensible records.

Isabelle/HOL’s support for \textit{extensible records} is of particular importance for our work. Record types are denoted, for example, by:

\begin{verbatim}
record T = a::T1
b::T2\end{verbatim}

which implicitly introduces the record constructor \(\langle a=e_1, b=e_2\rangle\) and the update of record \(r\) in field \(a\), written as \(r(a:=x)\). Extensible records are represented internally by cartesian products with an implicit free component.
\[\delta, \text{i.e. in this case by a triple of the type } T_1 \times T_2 \times \delta. \text{ The third component can be referenced by a special selector more available on extensible records. Thus, the record } T \text{ can be extended later on using the syntax:}
\]

```plaintext
record ET = T + c::T3
```

The key point is that theorems can be established, once and for all, on \(T \) types, even if future parts of the record are not yet known, and reused in the later definition and proofs over ET-values. Using this feature, we can model the effect of defining the alphabet of UTP processes incrementally while maintaining the full expressivity of HOL wrt. the types of \(T_1, T_2 \) and \(T_3 \).

2.3 Circus and its UTP Foundation

Circus is a formal specification language [18] which integrates the notions of states and complex data types (in a Z-like style) and communicating parallel processes inspired from CSP. From Z, the language inherits the notion of a schema used to model sets of (ground) states as well as syntactic machinery to describe pre-states and post-states; from CSP, the language inherits the concept of communication events and typed communication channels, the concepts of deterministic and non-deterministic choice (reflected by the process combinators \(P \parallel P' \) and \(P \cap P' \)), the concept of concealment (hiding) \(P \backslash A \) of events in \(A \) occurring in in the evolution of process \(P \). Due to the presence of state variables, the **Circus** synchronous communication operator syntax is slightly different frome CSP: \(P \parallel n \mid c \mid n' \parallel P' \) means that \(P \) and \(P' \) communicate via the channels mentioned in \(c \); moreover, \(P \) may modify the variables mentioned in \(n \) only, and \(P' \) in \(n' \) only, \(n \) and \(n' \) are disjoint name sets.

Moreover, the language comes with a formal notion of refinement based on a denotational semantics. It follows the failure/divergence semantics [15], (but coined in terms of the UTP [13]) providing a notion of execution trace \(\text{tr} \), refusals \(\text{ref} \), and divergences. It is expressed in terms of the UTP [11] which makes it amenable to other refinement-notions in UTP. Figure 1 presents a simple **Circus** specification, FIG, the fresh identifiers generator.

2.3.1 Predicates and Relations.

The UTP is a semantic framework based on an alphabetized relational calculus. An alphabetized predicate is a pair \((\text{alphabet, predicate})\) where the free variables appearing in the predicate are all in the alphabet, e.g. \((\{x, y\}, x > y)\). As such, it is very similar to the concept of a schema in Z. In the base theory Isabelle/UTP of this work, we represent alphabetized predicates by sets of (extensible) records, e.g. \(\{A. x \cdot A > y \cdot A\}\).

An alphabetized relation is an alphabetized predicate where the alphabet is composed of input (undecorated) and output (dashed) variables. In this
channel \textit{req} \\
channel \textit{ret, out} : ID \\

process FIG \triangleq begin \\
\textbf{state} S \triangleq \{ $idS : \mathbb{P}$ ID \} \\
Init \triangleq $idS := \emptyset$ \\
\begin{align*}
\text{Out} & \quad \Delta S \\
\text{v!} : ID & \quad \text{v!} \notin idS \\
idS' = idS \cup \{v!\}
\end{align*} \\
\begin{align*}
\text{Remove} & \quad \Delta S \\
x? : ID & \quad \text{idS}' = idS \setminus \{x?\}
\end{align*} \\
\cdot \text{Init} ; \textbf{var} v : ID \cdot \\
(\mu X \bullet (\text{req} \rightarrow \text{Out} ; \text{out!}v \rightarrow \text{Skip} \square \text{ref?}x \rightarrow \text{Remove}) ; X) \\
end \\

Figure 1: The Fresh Identifiers Generator in (Textbook) Circus \\

\begin{itemize}
\item case the predicate describes a relation between input and output variables, for example \{(x, x', y, y'), x' = x + y\} which is a notation for: \{(A, A').x A' = x A + y A\}, which is a set of pairs, thus a relation.
\item Standard predicate calculus operators are used to combine alphabetized predicates. The definition of these operators is very similar to the standard one, with some additional constraints on the alphabets.
\end{itemize}

\subsection{2.3.2 Designs and processes.}

In UTP, in order to explicitly record the termination of a program, a subset of alphabetized relations is introduced. These relations are called \textit{designs} and their alphabet should contain the special boolean observational variable \textit{ok}. It is used to record the start and termination of a program. A UTP design is defined as follows in Isabelle:

\[(P \vdash Q) \equiv \lambda (A,A'). (ok A \land P (A,A')) \rightarrow (ok A' \land Q (A,A'))\]

Following the way of UTP to describe reactive processes, more observational variables are needed to record the interaction with the environment. Three observational variables are defined for this subset of relations: \textit{wait}, \textit{tr} and \textit{ref}. The boolean variable \textit{wait} records if the process is waiting for an interaction or has terminated. \textit{tr} records the list (trace) of interactions the process has performed so far. The variable \textit{ref} contains the set
of interactions (events) the process may refuse to perform. These observational variables defines the basic alphabet of all reactive processes called “alpha rp”.

Some healthiness conditions are defined over wait, tr and ref to ensure that a reactive process satisfies some properties [6] (see Table 2 in [9]).

A CSP process is a UTP reactive process that satisfies two additional healthiness conditions (all well-formedness conditions can be found in [9]). A process that satisfies these conditions is said to be CSP healthy.

3 Isabelle/Circus

The Isabelle/Circus environment allows a syntax of processes which is close to the textbook presentations of Circus (see Fig. 2). Similar to other specification constructs in Isabelle/HOL, this syntax is “parsed away”, i.e. compiled into an internal representation of the denotational semantics of Circus, which is a formalization in form of a shallow embedding of the (essentially untyped) paper-and-pencil definitions by Oliveira et al. [13], based on UTP. Circus actions are defined as CSP healthy reactive processes.

In the UTP representation of reactive processes we have given in a previous paper [8], the process type is generic. It contains two type parameters that represent the channel type and the alphabet of the process. These parameters are very general, and they are instantiated for each specific process. This could be problematic when representing the Circus semantics, since some definitions rely directly on variables and channels (e.g. assignment and communication). In this section we present our solution to deal
with this kind of problems, and our representation of the Circus actions and processes.

We now describe the foundation as well as the semantic definition of some process operators of Circus. A distinguishing feature of Circus processes are explicit state variables which do not exist in other process algebras like, e.g., CSP. These can be:

- **global state variables**, i.e. they are declared via alphabetized predicates in the state section, or Z-like \(\Delta \) operations on global states that generate alphabetized relations, or

- **local state variables**, i.e. they are result of the variable declaration statement \(\text{var var } @ \text{Action} \). The scope of local variables is restricted to \(\text{Action} \).

On both kind of state variables, logical constraints may be expressed.

3.1 Alphabets and Variables

In order to define the set of variables of a specification, the Circus semantics considers the alphabet of its components, be it on the level of alphabetized predicates, alphabetized relations or actions. We recall that these items are represented by sets of records or sets of pairs of records. The alphabet of a process is defined by extending the basic reactive process alphabet (cf. Section 2.3.2) by its variable names and types. For the example FIG, where the global state variable \(\text{idS} \) is defined, this is reflected in Isabelle/Circus by the extension of the process alphabet by this variable, i.e. by the extension of the Isabelle/HOL record:

\[
\text{record } \alpha \text{ alpha } = \alpha \text{ alpha rp } + \text{idS :: ID set}
\]

This introduces the record type \(\text{alpha} \) that contains the observational variables of a reactive process, plus the variable \(\text{idS} \). Note that our Circus semantic representation allows “built-in” bindings of alphabets in a typed way. Moreover, there is no restriction on the associated HOL type. However, the inconvenience of this representation is that variables cannot be introduced “on the fly”; they must be known statically i.e. at type inference time. Another consequence is that a ”syntactic” operation such as variable renaming has to be expressed as a ”semantic” operation that maps one record type into another.

3.1.1 Updating and accessing global variables.

Since the alphabets are represented by HOL records, i.e. a kind binding ”name \(\mapsto\) value”, we need a certain infrastructure to access data in them and to update them. The Isabelle representation as records gives us already
two functions (for each record) “select” and “update”. The “select” function returns the value of a given variable name, and the “update” functions updates the value of this variable. Since we may have different HOL types for different variables, a unique definition for select and update cannot be provided. There is an instance of these functions for each variable in the record. The name of the variable is used to distinguish the different instances: for the select function the name is used directly and for the update function the name is used as a prefix e.g. for a variable named “x” the names of the select and update functions are respectively x of type α and x_update. Since a variable is characterized essentially by these functions, we define a general type (synonym) called var which represents a variable as a pair of its select and update function (in the underlying state σ).

$$\text{types} \ (\beta, \sigma) \ \text{var} = "(\sigma \Rightarrow \beta) \ \ast \ ((\beta \Rightarrow \sigma) \Rightarrow \sigma)"$$

For a given alphabet (record) of type σ, $(\beta, \text{the type } \sigma)\text{var}$ represents the type of the variables whose value type is β. One can then extract the select and update functions from a given variable with the following functions:

definition $\text{select} :: \ ((\beta, \sigma) \ \text{var} \Rightarrow \sigma \Rightarrow \beta)$

where $\text{select} \ f \equiv (\text{fst} \ f)$

definition $\text{update} :: \ ((\beta, \sigma) \ \text{var} \Rightarrow \beta \Rightarrow \sigma \Rightarrow \sigma)$

where $\text{update} \ f \ v \equiv (\text{snd} \ f) \ (\lambda _ . \ v)$

Finally, we introduce a function called VAR to implement a syntactic translation of a variable name to an entity of type var.

$$\text{syntax} \ "_\text{VAR}" :: "_\ id \Rightarrow (\beta, \sigma) \ \text{var}" \ ("_\text{VAR} _\")$$

$$\text{translations} \ \text{VAR} \ x \Rightarrow (x, _\text{update}_\ \text{name} \ x)$$

Note that in this syntactic translation rule, $_\text{update}_\ \text{name} \ x$ stands for the concatenation of the string $_\text{update}_\$ with the content of the variable x; the resulting $_\text{update}_\ x$ in this example is mapped to the field-update function of the extensible record x_update by a default mechanism. On this basis, the assignment notation can be written as usual:

$$\text{syntax} \ "_\text{assign}" :: "_\ id \Rightarrow (\sigma \Rightarrow \beta) \Rightarrow (\alpha, \sigma) \ \text{action}" \ ("_\ _\Rightarrow _\")$$

$$\text{translations} \ "x \ _\Rightarrow E" \Rightarrow "\text{CONST} \ \text{ASSIGN} \ \text{(VAR} \ x) \ E"$$

and mapped to the semantics of the program variable (x, x_update) together with the universal ASSIGN operator defined later on, in Section 3.3.2.

3.1.2 Updating and accessing local variables.

In Circus, local program variables can be introduced on the fly, and their scopes are explicitly defined, as can be seen in the FIG example. In textbook
Circus, nested scopes are handled by variable renaming which is not possible in our representation due to the implicit representation of variable names. We represent local program variables by global variables, using the \texttt{var} type defined above, where selection and update involve an explicit stack discipline. Each variable is mapped to a list of values, and not to one value only (as for state variables). Entering the scope of a variable is just adding a new value as the head of the corresponding values list. Leaving a variable scope is just removing the head of the values list. The select and update functions correspond to selecting and updating the head of the list. This ensures dynamic scoping, as it is stated by the Circus semantics.

Note that this encoding scheme requires to make local variables lexically distinct from global variables; local variable instances are just distinguished from the global ones by the stack discipline.

3.2 Synchronization infrastructure: Name sets and channels.

3.2.1 Name sets.

An important notion, used in the definition of parallel Circus actions, is name sets as seen in Section 2.3. A name set is a set of variable names, which is a subset of the alphabet. This notion cannot be directly expressed in our representation since variable names are not explicitly represented. Thus its definition relies on the characterization of the variables in our representation. As for variables, name sets are defined by their functional characterization. They are used in the definition of the binding merge function MSt below:

\[
\forall v \in (v \in ns1 \Rightarrow v' = (1, v)) \land (v \in ns2 \Rightarrow v' = (2, v)) \land (v \notin ns1 \cup ns2 \Rightarrow v' = v).
\]

The disjoint name sets $ns1$ and $ns2$ are used to determine which variable values (extracted from local bindings of the parallel components) are used to update the global binding of the process. A name set can be functionally defined as a binding update function, that copies values from a local binding to the global one. For example, a name set NS that only contains the variable x can be defined as follows in Isabelle/Circus:

\[
definition NS \, lb \, gb \equiv x_{update}(x \, lb) \, gb\]

where \texttt{lb} and \texttt{gb} stands for local and global bindings, \texttt{x} and \texttt{x_update} are the select and update functions of variable \texttt{x}. Then the merge function can be defined by composing the application of the name sets to the global binding.

3.2.2 Channels.

Reactive processes interact with the environment via synchronizations and communications. A synchronization is an interaction via a channel without any exchange of data. A communication is a synchronization with data exchange. In order to reason about communications in the same way, a
datatype channels is defined using the channels names as constructors. For instance, in:

datatype channels = chan1 | chan2 nat | chan3 bool

we declare three channels: chan1 that synchronizes without data, chan2 that communicates natural values and chan3 that exchanges boolean values.

This definition makes it possible to reason globally about communications since they have the same type. However, the channels may not have the same type: in the example above, the types of chan1, chan2 and chan3 are respectively channels, nat ⇒ channels and bool ⇒ channels. In the definition of some Circus operators, we need to compare two channels, and one can’t compare for example chan1 with chan2 since they don’t have the same type. A solution would be to compare chan1 with (chan2 v). The types are equivalent in this case, but the problem remains because comparing (chan2 0) to (chan2 1) will state inequality just because the communicated values are not equal. We could define an inductive function over the datatype channels to compare channels, but this is only possible when all the channels are known a priori.

Thus, we add some constraint to the generic channels type: we require the channels type to implement a function chan_eq that tests the equality of two channels. Fortunately, Isabelle/HOL provides a construct for this kind of restriction: the type classes (sorts) mentioned in Section 2.1. We define a type class (interface) chan_eq that contains a signature of the chan_eq function.

class chan_eq =
 fixes chan_eq :: "α ⇒α ⇒ bool"
begin end

Concrete channels type must implement the interface (class) “chan_eq” that can be easily defined for this concrete type. Moreover, one can use this class to add some definition that depends on the channel equivalence function. For example, a trace equivalence function can be defined as follows:

fun tr_eq where
 tr_eq [] [] = True | tr_eq xs [] = False | tr_eq [] ys = False
 | tr_eq (x#xs) (y#ys) = if chan_eq x y then tr_eq xs ys else False

It is applicable to traces of elements whose type belongs to the sort chan_eq.

3.3 Actions and Processes

The Circus actions type is defined as the set of all the CSP healthy reactive processes. The type (α, σ)relation_rp is the reactive process type where α is of channels type and σ is a record extensions of action_rp, i.e. the global state variables. On this basis, we can encode the concept of a process
for a family of possible state instances. We introduce below the vital type
\texttt{action}:

\begin{verbatim}
type Action
\end{verbatim}

\begin{verbatim}
(α::chan_eq, σ) action = {p:(α,σ)relation_rp. is_CSP_process p}
\end{verbatim}

\texttt{proof} - {...} \texttt{qed}

As mentioned before, a type-definition introduces a new type by stating a set. In our case it is the set of reactive processes that satisfy the healthiness-conditions for CSP-processes, isomorphic to the new type.

Technically, this construct introduces two constants definitions \texttt{Abs_Action} and \texttt{Rep_Action} respectively of type \((α,σ) relation_rp \Rightarrow (α,σ) action\) and \((α,σ) action \Rightarrow (α,σ) relation_rp\) as well as the usual two axioms expressing the bijection \texttt{Abs_Action(Rep_Action(X))=X} and \texttt{is_CSP_process p =⇒ Rep_Action(Abs_Action(p))=p} where \texttt{is_CSP_process} captures the healthiness conditions.

Every \textit{Circus} action is an abstraction of an alphabetized predicate. In [9], we introduce the definitions of all the actions and operators using their denotational semantics. The environment contains, for each action, the proof that this predicate is CSP healthy.

In this section, we present some of the important definitions, namely: basic actions, assignments, communications, hiding, and recursion.

\subsection*{3.3.1 Basic actions.}

\texttt{Stop} is defined as a reactive design, with a precondition \texttt{true} and a post-condition stating that the system deadlocks and the traces are not evolving.

\texttt{definition}
\texttt{Stop ≡ Abs_Action (R (true ⊨ λ(A, A'). tr A' = tr A ∧ wait A'))}

\texttt{Skip} is defined as a reactive design, with a precondition \texttt{true} and a postcondition stating that the system terminates and all the state variables are not changed. We represent this fact by stating that the more field (seen in Section 2.2) is not changed, since this field is mapped to all the state variables. Note that using the more-field is a tribute to our encoding of alphabets by extensible records and stands for all future extensions of the alphabet (e.g. state variables).

\texttt{definition}
\texttt{Skip ≡ Abs_Action (R (true ⊨ λ(A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A = more A'))}

\subsection*{3.3.2 The universal assignment action.}

In Section 3.1.1, we described how global and local variables are represented by access- and updates functions introduced by fields in extensible records.
In these terms, the "lifting" to the assignment action in *Circus* processes is straightforward:

definition

\[\text{ASSIGN} ::= (\beta, \sigma) \text{ var } \Rightarrow (\sigma \Rightarrow \beta) \Rightarrow (\alpha::\text{ev_eq}, \sigma) \text{ action} \]

where

\[\text{ASSIGN x e } \equiv \text{Abs_Action (R (true } \vdash Y)) \]

where

\[Y = \lambda (A, A'). \text{tr A' = tr A } \land \neg \text{wait A' } \land \]
\[\text{more A' = (assign x (e (more A))) (more A) } \]

where **assign** is the projection into the update operation of a semantic variable described in section 3.1.1.

3.3.3 Communications.

The definition of prefixed actions is based on the definition of a special relation \(\text{do}_I\). In the *Circus* denotational semantics [13], various forms of prefixing were defined. In our theory, we define one general form, and the other forms are defined as special cases.

definition \(\text{do}_I\) c x P \(\equiv X \triangleleft \text{wait o fst } \triangledown Y\)

where

\[X = (\lambda (A, A'). \text{tr A = tr A'} \land ((c ' P) \cap \text{ref A'}) = {}) \]

and

\[Y = (\lambda (A, A'). \text{hd ((tr A') - (tr A)) } \in (c ' P) \land \]
\[(c \text{ (select x (more A))) } = (\text{last (tr A'))}) \]

where **c** is a channel constructor, **x** is a variable (of **var** type) and **P** is a predicate. The \(\text{do}_I\) relation gives the semantics of an interaction: if the system is ready to interact, the trace is unchanged and the waiting channel is not refused. After performing the interaction, the new event in the trace corresponds to this interaction.

The semantics of the whole action is given by the following definition:

definition Prefix c x P S \(\equiv\text{Abs_Action(R (true } \vdash Y)) \ ; S\)

where

\[Y = \text{do}_I\ c x P \land (\lambda (A, A'). \text{more A' = more A}) \]

where **c** is a channel constructor, **x** is a variable (of type **var**), **P** is a predicate and **S** is an action. This definition states that the prefixed action semantics is given by the interaction semantics (\(\text{do}_I\)) sequentially composed with the semantics of the continuation (action **S**).

Different types of communication are considered:

- **Inputs**: the communication is done over a variable.
- **Constrained Inputs**: the input variable value is constrained with a predicate.
• Outputs: the communications exchanges only one value.

• Synchronizations: only the channel name is considered (no data).

The semantics of these different forms of communications is based on the general definition above.

definition read c x P ≡ Prefix c x true P
definition write1 c a P ≡ Prefix c (λs. a s, (λ x. λy. y)) true P
definition write0 c P ≡ Prefix (λ_.c) (λ_._, (λ x. λy. y)) true P

where read, write1 and write0 respectively correspond to inputs, outputs and synchronization. Constrained inputs correspond to the general definition.

We configure the Isabelle syntax-engine such that it parses the usual communication primitives and gives the corresponding semantics:

translations
c ? p → P == CONST read c (VAR p) P
c ? p : b → P == CONST Prefix c (VAR p) b P
c ! p → P == CONST write1 c p P
a → P == CONST write0 (TYPE(_)) a P

3.3.4 Hiding.

The hiding operator is interesting because it depends on a channel set. This operator P \ cs is used to encapsulate the events that are in the channel set cs. These events become no longer visible from the environment. The semantics of the hiding operator is given by the following reactive process:

definition
Hide :: "[(α, σ) action , α set] ⇒ (α, σ) action" (infixl "\")
where
P \ cs ≡ Abs_Action(R((λ (A, A').
∃ s. (Rep_Action P)(A, A'(tr :=s, ref := (ref A') ∪ cs))
∧ (tr A' - tr A) = (tr_filter (s - tr A) cs))); Skip

The definition uses a filtering function tr_filter that removes from a trace the events whose channels belong to a given set. The definition of this function is based on the function chan_eq we defined in the class chan_eq. This explains the presence of the constraint on the type of the action channels in the hiding definition, and in the definition of the filtering function below:

fun tr_filter::"a::chan_eq list ⇒ a set ⇒ a list" where
tr_filter [] cs = []
| tr_filter (x#xs) cs = (if (∼ chan-in_set x cs)
 then (x#(tr_filter xs cs))
 else (tr_filter xs cs))
where the \texttt{chan-in-set} function checks if a given channel belongs to a channel set using \texttt{chan_eq} as equality function.

3.3.5 Recursion.

To represent the recursion operator “μ” over actions, we use the universal least fix-point operator “\texttt{lfp}” defined in the HOL library for lattices and we follow again [13]. The use of least fix-points in [13] is the most substantial deviation from the standard CSP denotational semantics, which requires Scott-domains and complete partial orderings. The operator \texttt{lfp} is inherited from the “\textit{Complete Lattice class}” under some conditions, and all theorems defined over this operator can be reused. In order to reuse this operator, we have to show that the least-fixpoint over functionals that enrich pairs of failure - and divergence trace sets monotonely, produces an \texttt{action} that satisfies the CSP healthiness conditions. This consistency proof for the recursion operator is the largest contained in the Isabelle/Circus library.

Therefore, we must prove that the Circus actions type defines a complete lattice. This leads to prove that the actions type belongs to the HOL “\textit{Complete Lattice class}”. Since type classes in HOL are hierarchic, the proof is in three steps: first, a proof that the Circus actions type forms a lattice by instantiating the HOL “\textit{Lattice class}”; second, a proof that actions type instantiates a subclass of lattices called “\textit{Bounded Lattice class}”; third, proof of the instantiation from the “\textit{Complete Lattice class}”. More on these proofs can be found in [9].

3.3.6 Circus Processes.

A Circus process is defined in our environment as a local theory by introducing qualified names for all its components. This is very similar to the notion of namespaces popular in programming languages. Defining a Circus process locally makes it possible to encapsulate definitions of alphabet, channels, schema expressions and actions in the same namespace. It is important for the foundation of Isabelle/Circus to avoid the ambiguity between local process entities definitions (e.g. FIG.Out and DFIG.Out in the example of Section 4).

4 Using Isabelle/Circus

We describe the front-end interface of Isabelle/Circus. In order to support a maximum of common Circus syntactic look-and-feel, we have programmed at the SML level of Isabelle a compiler that parses and (partially) pretty prints Circus process given in the syntax presented in Figure 2.
4.1 Writing specifications

A specification is a sequence of paragraphs. Each paragraph may be a declaration of alphabet, state, channels, name sets, channel sets, schema expressions or actions. The main action is introduced by the keyword \texttt{where}.

Below, we illustrate how to use the environment to write a \textit{Circus} specification using the \texttt{FIG} process example presented in Figure 1.

\begin{verbatim}
circusprocess FIG =
 alphabet = [v::nat, x::nat]
 state = [idS::nat set]
 channel = [req, ret nat, out nat]
 schema Init = idS := {}
 schema Out = \exists a. v' = a \land v' \notin idS \land idS' = idS \cup \{v'\}
 schema Remove = x \notin idS \land idS' = idS - \{x\}
 where var v \cdot Schema Init;
 (\mu X \cdot (req \rightarrow Schema Out; out!v \rightarrow \textbf{Skip})
 \Box (ret?x \rightarrow Schema Remove); X)
\end{verbatim}

Each line of the specification is translated into the corresponding semantic operator given in Section 3.3. We describe below the result of executing each command of \texttt{FIG}:

- the compiler introduces a scope of local components whose names are qualified by the process name (\texttt{FIG} in the example).

- \texttt{alphabet} generates a list of record fields to represent the binding. These fields map names to value lists.

- \texttt{state} generates a list of record fields that corresponds to the state variables. The names are mapped to single values. This command, together with \texttt{alphabet} command, generates a record that represents all the variables (for the \texttt{FIG} example the command generates the record \texttt{FIG_alphabet}, that contains the fields \texttt{v} and \texttt{x} of type \texttt{nat list} and the field \texttt{idS} of type \texttt{nat set}).

- \texttt{channel} introduces a datatype of typed communication channels (for the \texttt{FIG} example the command generates the datatype \texttt{FIG_channels} that contains the constructors \texttt{req} without communicated value and \texttt{ret} and \texttt{out} that communicate natural values).

- \texttt{schema} allows the definition of schema expressions represented as an alphabetized relation over the process variables (in the example the schema expressions \texttt{FIG.Init}, \texttt{FIG.Out} and \texttt{FIG.Remove} are generated).

- \texttt{action} introduces definitions for \textit{Circus} actions in the process. These definitions are based on the denotational semantics of \textit{Circus} actions.
The type parameters of the action type are instantiated with the locally defined channels and alphabet types.

- where introduces the main action as in action command (in the example the main action is FIG.FIG of type (FIG_channels, FIG_alphabet)action).

4.2 Relational and Functional Refinement in Circus

The main goal of Isabelle/Circus is to provide a proof environment for Circus processes. The “shallow-embedding” of Circus and UTP in Isabelle/HOL offers the possibility to reuse proof procedures, infrastructure and theorem libraries already existing in Isabelle/HOL. Moreover, once a process specification is encoded and parsed in Isabelle/Circus, proofs of, e.g., refinement properties can be developed using the ISAR language for structured proofs.

To show in more details how to use Isabelle/Circus, we provide a small example of action refinement proof. The refinement relation is defined as the universal reverse implication in the UTP. In Circus, it is defined as follows:

\[
\text{definition } A1 \preceq_c A2 \equiv (\text{Rep}_\text{Action} A1) \preceq_{\text{utp}} (\text{Rep}_\text{Action} A2)
\]

where \(A1\) and \(A2\) are Circus actions, \(\preceq_c\) and \(\preceq_{\text{utp}}\) stands respectively for refinement relation on Circus actions and on UTP predicate.

This definition assumes that the actions \(A1\) and \(A2\) share the same alphabet (binding) and the same channels. In general, refinement involves an important data evolution and growth. The data refinement is defined in [16, 5] by backwards and forwards simulations. In this paper, we restrict ourselves to a special case, the so-called functional backwards simulation. This refers to the fact that the abstraction relation \(R\) that relates concrete and abstract actions is just a function:

\[
\text{definition } \text{Simulation} ("_ \preceq R _") \text{ where }
A1 \preceq R A2 = \forall a b. (\text{Rep}_\text{Action} A2)(a,b) \rightarrow (\text{Rep}_\text{Action} A1)(R a,R b)
\]

where \(A1\) and \(A2\) are Circus actions and \(R\) is a function mapping the corresponding \(A1\) alphabet to the \(A2\) alphabet.

4.3 Refinement Proofs

We can use the definition of simulation to transform the proof of refinement to a simple proof of implication by unfolding the operators in terms of their underlying relational semantics. The problem with this approach is that the size of proofs will grow exponentially with the size of the processes. To avoid this problem, some general refinement laws were defined in [5] to deal with the refinement of Circus actions at operators level and not at UTP level. We introduced and proved a subset of these laws in our environment (see Table 1).
In Table 1, the relations \(x \sim_S y \) and \(g_1 \simeq_S g_2 \) record the fact that the variable \(x \) (respectively the guard \(g_1 \)) is refined by the variable \(y \) (respectively by the guard \(g_2 \)) w.r.t the simulation function \(S \).

These laws can be used in complex refinement proofs to simplify them at the \textit{Circus} level. More rules can be defined and proved to deal with more complicated statements like combination of operators for example. Using these laws, and exploiting the advantages of a shallow embedding, the automated proof of refinement becomes surprisingly simple.

Coming back to our example, let us consider the \textit{DFIG} specification below, where the management of the identifiers via the set \texttt{idS} is refined into a set of removed identifiers \texttt{retidS} and a number \texttt{max}, which is the rank of the last issued identifier.

\begin{verbatim}
process DFIG =
 \textbf{alphabet} = [w::nat, y::nat]
 \textbf{state} = [retidS::nat set, max::nat]
 schema Init = retidS' = {} \land max' = 0
 schema Out = w' = max \land max' = max+1 \land retidS' = retidS - \{max\}
 schema Remove = y < max \land y \notin retidS \land retidS' = retidS \cup \{y\} \land max' = max
where var w \cdot Schema Init; (\mu X \cdot (\text{req} \rightarrow Schema Out; \text{out}!w \rightarrow \text{Skip}))
 \square (\text{ret}?y \rightarrow Schema Remove); X)
\end{verbatim}
We provide the proof of refinement of FIG by DFIG just instantiating the simulation function \(R \) by the following abstraction function, that maps the underlying concrete states to abstract states:

\[
\text{definition } \text{Sim } A = \text{FIG_alphabet.make } (w \ A) \ (y \ A) \\
\quad \quad (\{a. \ a < (\max \ A) \land a \notin (\text{retidS } A)\})
\]

where \(A \) is the alphabet of DFIG, and \(\text{FIG_alphabet.make} \) yields an alphabet of type \(\text{FIG_Alphabet} \) initializing the values of \(v, x \) and \(\text{idS} \) by their corresponding values from \(\text{DFIG_alphabet}: w, y \) and \(\{a. \ a < \max \land a \notin \text{retidS}\} \).

To prove that DFIG is a refinement of FIG one must prove that the main action DFIG.DFIG refines the main action FIG.FIG. The definition is then simplified, and the refinement laws are applied to simplify the proof goal. Thus, the full proof consists of a few lines in ISAR:

\[
\text{theorem } "\text{FIG.FIG} \leq \text{Sim DFIG.DFIG}" \\
\quad \text{apply } (\text{auto simp: DFIG.DFIG_def FIG.FIG_def mono_Seq} \\
\quad \quad \text{intro!: VarI SeqI MuI DetI SyncI InpI OutI SkipI}) \\
\quad \text{apply } (\text{simp_all add: SimRemove SimOut SimInit Sim_def}) \\
\text{done}
\]

First, the definitions of FIG.FIG and DFIG.DFIG are simplified and the defined refinement laws are used by the auto tactic as introduction rules. The second step replaces the definition of the simulation function and uses some proved lemmas to finish the proof. The three lemmas used in this proof: SimInit, SimOut and SimRemove give proofs of simulation for the schema Init, Out and Remove.

5 Conclusions

We have shown for the language Circus, which combines data-oriented modeling in the style of Z and behavioral modeling in the style of CSP, a semantics in form of a shallow embedding in Isabelle/HOL. In particular, by representing the somewhat non-standard concept of the alphabet in UTP in form of extensible records in HOL, we achieved a fairly compact, typed presentation of the language. In contrast to previous work based on some deep embedding [19], this shallow embedding allows arbitrary (higher-order) HOL-types for channels, events, and state-variables, such as, e.g., sets of relations etc. Besides, systematic renaming of local variables is avoided by compiling them essentially to global variables using a stack of variable instances. The necessary proofs for showing that the definitions are consistent — i.e. satisfy altogether is_CSP_healthy — have been done, together with a number of algebraic simplification laws on Circus processes.

Since the encoding effort can be hidden behind the scene by flexible extension mechanisms of the Isabelle, it is possible to have a compact notation
for both specifications and proofs. Moreover, existing standard tactics of Isabelle such as auto, simp and metis can be reused since our Circus semantics is representationally close to HOL. Thus, we provide an environment that can cope with combined refinements concerning data and behavior. Finally, we demonstrate its power — w.r.t. both expressivity and proof automation — with a small, but prototypic example of a process-refinement.

In the future, we intend to use Isabelle/Circus for the generation of test-cases, on the basis of [4], using the HOL-TestGen-environment [2].

6 Acknowledgement

We warmly thank Markarius Wenzel for his valuable help with the Isabelle framework. Furthermore, we are greatly indebted to Ana Cavalcanti for her comments on the semantic foundation of this work.
7 UTP variables

theory Var
imports Main
begin

UTP variables are characterized by two functions, select and update. The
variable type is then defined as a tuple (select * update).

type-synonym ('a, 'r) var = ('r => 'a) * (('a => 'a) => 'r => 'r)

The lookup function returns the corresponding select function of a variable.

definition lookup :: ('a, 'r) var => 'r => 'a
 where lookup f ≡ (fst f)

The assign function uses the update function of a variable to update its
value.

definition assign :: ('a, 'r) var => 'a => 'r => 'r
 where assign f v ≡ (snd f) (λ -. v)

The VAR function allows to retrieve a variable given its name.

syntax -VAR :: id ⇒ ('a, 'r) var (VAR -)
translations VAR x => (x, -update-name x)

end

8 Predicates and relations

theory Relations
imports Var
begin
default-sort type

Unifying Theories of Programming (UTP) is a semantic framework based
on an alphabetized relational calculus. An alphabetized predicate is a pair
(alphabet, predicate) where the free variables appearing in the predicate are
all in the alphabet.

An alphabetized relation is an alphabetized predicate where the alphabet
is composed of input (undecorated) and output (dashed) variables. In this
case the predicate describes a relation between input and output variables.

8.1 Definitions

In this section, the definitions of predicates, relations and standard operators
are given.

type-synonym 'α alphabet = 'α
type-synonym 'α condition = 'α × 'α ⇒ bool

definition true::'α predicate
where true ≡ λA. True

definition false::'α predicate
where false ≡ λA. False

definition not::'α predicate ⇒ 'α predicate
where ¬P ≡ λA. ¬(P A)

definition conj::'α predicate ⇒ 'α predicate ⇒ 'α predicate
where P ∧ Q ≡ λA. P A ∧ Q A

definition disj::'α predicate ⇒ 'α predicate ⇒ 'α predicate
where P ∨ Q ≡ λA. P A ∨ Q A

definition impl::'α predicate ⇒ 'α predicate ⇒ 'α predicate
where P −→ Q ≡ λA. P A −→ Q A

definition iff::'α predicate ⇒ 'α predicate ⇒ 'α predicate
where P ←→ Q ≡ λA. P A ←→ Q A

definition ex::['β ⇒ 'α predicate] ⇒ 'α predicate (binder $∃ 10)
where $∃ x. (P x) A

definition all::['β ⇒ 'α predicate] ⇒ 'α predicate (binder $∀ 10)
where $∀ x. (P x) A

type-synonym 'α condition = ('α × 'α) ⇒ bool

type-synonym 'α relation = ('α × 'α) ⇒ bool

definition cond::'α relation ⇒ 'α condition ⇒ 'α relation ⇒ 'α relation
where (P ⊢ b > Q) ≡ ((P ∧ Q) ⊢ ((¬ b) ∧ Q))

definition comp::((('α × 'β) ⇒ bool) ⇒ (('β × 'γ) ⇒ bool)) ⇒ (('α × 'γ) ⇒ bool)
where P ; ; Q ≡ λx. r : (p. P p) O (q. Q q)

definition Assign::('a, 'b) var ⇒ 'a ⇒ 'b relation
where Assign x a ≡ λ(A, A'). A' = (assign x a) A

syntax
-assignment :: id ⇒ 'a ⇒ 'b relation (· := ·)

translations
y ::= vv ⇒ CONST Assign (VAR y) vv

abbreviation (input) closure::'α predicate ⇒ bool ([·])
where \[P \equiv \forall A. P A \]

abbreviation (input) ndet::\(\alpha \) relation \(\Rightarrow \) \(\alpha \) relation ((\(\cap \) \(- \)))
where \(P \cap Q \equiv P \lor Q \)

abbreviation (input) join::\(\alpha \) relation \(\Rightarrow \) \(\alpha \) relation ((\(\cup \) \(- \)))
where \(P \cup Q \equiv P \land Q \)

abbreviation (input) ndetS::\(\alpha \) relation set \(\Rightarrow \) \(\alpha \) relation ((\(\bigcap \) \(- \)))
where \(\bigcap S \equiv \lambda A. A \in \bigcup \{p. P p \mid P. P \in S \} \)

abbreviation (input) conjS::\(\alpha \) relation set \(\Rightarrow \) \(\alpha \) relation ((\(\bigcup \) \(- \)))
where \(\bigcup S \equiv \lambda A. A \in \bigcap \{p. P p \mid P. P \in S \} \)

abbreviation (input) skip-r::\(\alpha \) relation
where \(\Pi \equiv \lambda A, A'. A = A' \)

abbreviation (input) Bot::\(\alpha \) relation
where \(Bot \equiv true \)

abbreviation (input) Top::\(\alpha \) relation
where \(Top \equiv false \)

lemmas utp-defs = true-def false-def conj-def disj-def not-def impl-def iff-def ex-def all-def cond-def comp-def Assign-def

8.2 Proofs

All useful proved lemmas over predicates and relations are presented here. First, we introduce the most important lemmas that will be used by automatic tools to simplify proofs. In the second part, other lemmas are proved using these basic ones.

8.2.1 Setup of automated tools

lemma true-intro: \(P \equiv \forall A. P A \) by (simp add: utp-defs)
lemma false-elim: \(false x \Rightarrow C \) by (simp add: utp-defs)
lemma true-elim: \(true x \Rightarrow C \Rightarrow C \) by (simp add: utp-defs)
lemma not-intro: \((\neg P) x \Rightarrow (\neg P) \) by (auto simp add: utp-defs)
lemma not-elim: \((\neg P) x \Rightarrow P x \Rightarrow C \) by (auto simp add: utp-defs)
lemma not-dest: \((\neg P) x \Rightarrow \neg P x \) by (auto simp add: utp-defs)
lemma conj-intro: \(P x \Rightarrow Q x \Rightarrow (P \land Q) x \) by (auto simp add: utp-defs)
lemma conj-elim: \((P \land Q) x \Rightarrow (P x \Rightarrow Q x \Rightarrow C) \Rightarrow C \) by (auto simp add: utp-defs)
lemma disj-introC: \((\neg Q x \Rightarrow P x) \Rightarrow (P \lor Q) x \) by (auto simp add: utp-defs)

26
lemma disj-elim: \((P \lor Q) x \Rightarrow (P x \Rightarrow C) \Rightarrow (Q x \Rightarrow C) \Rightarrow C\) by (auto simp add: utp-defs)

lemma impl-intro: \((P x \Rightarrow Q x) \Rightarrow (P \rightarrow Q) x\) by (auto simp add: utp-defs)

lemma impl-elimC: \((P \rightarrow Q) x \Rightarrow (\neg P x \Rightarrow R) \Rightarrow (Q x \Rightarrow R) \Rightarrow R\) by (auto simp add: utp-defs)

lemma iff-intro: \((P x \Rightarrow Q x) \Rightarrow (Q x \Rightarrow P x) \Rightarrow (P \leftrightarrow Q) x\) by (auto simp add: utp-defs)

lemma iff-elimC: \((P \leftrightarrow Q) x \Rightarrow (P a x \Rightarrow Q a x \Rightarrow R) \Rightarrow (\neg P a x \Rightarrow \neg Q a x \Rightarrow R) \Rightarrow R\) by (auto simp add: utp-defs)

lemma all-intro: \((\forall a. P a x) \Rightarrow (\forall a. P a) x\) by (auto simp add: utp-defs)

lemma all-elim: \((\forall a. P a) x \Rightarrow (P a x \Rightarrow R) \Rightarrow R\) by (auto simp add: utp-defs)

lemma ex-intro: \(P a x \Rightarrow (\exists a. P a) x\) by (auto simp add: utp-defs)

lemma ex-elim: \((\exists a. P a) x \Rightarrow (\forall a. P a x \Rightarrow Q) \Rightarrow Q\) by (auto simp add: utp-defs)

lemma comp-intro: \(P (a, b) \Rightarrow Q (b, c) \Rightarrow (P ; Q) (a, c)\) by (auto simp add: comp-def)

lemma comp-elim: \((P ; Q) ac \Rightarrow (\exists a b c. ac = (a, c) \Rightarrow P (a, b) \Rightarrow Q (b, c) \Rightarrow C) \Rightarrow C\) by (auto simp add: comp-def)

declare not-def [simp]

declare iff-intro [intro!]

and not-intro [intro!]

and impl-intro [intro!]

and disj-introC [intro!]

and conj-intro [intro!]

and true-intro [intro!]

and comp-intro [intro]

declare not-dest [dest!]

and iff-elimC [elim!]

and false-elim [elim!]

and impl-elimC [elim!]

and disj-elim [elim!]

and conj-elim [elim!]

and comp-elim [elim!]

and true-elim [elim!]

declare all-intro [intro!]

and ex-intro [intro]

declare ex-elim [elim!]

and all-elim [elim]
lemmas relation-rules = iff-intro not-intro impl-intro disj-intro conj-intro true-intro
comp-intro not-dest iff-elim conj-elim disj-elim ex-intro ex-elim

lemma split-cond:
\[A ((P \triangleleft b \triangleright Q) x) = ((b x \rightarrow A (P x)) \land (\neg b x \rightarrow A (Q x))) \]
by (cases b x) (auto simp add: utp-defs)

lemma split-cond-asm:
\[A ((P \triangleleft b \triangleright Q) x) = (\neg ((b x \land \neg A (P x)) \lor (\neg b x \land \neg A (Q x)))) \]
by (cases b x) (auto simp add: utp-defs)

lemmas cond-splits = split-cond split-cond-asm

8.2.2 Misc lemmas

lemma cond-idem: \((P \triangleleft b \triangleright P) = P\)
by (rule ext) (auto split: cond-splits)

lemma cond-symm: \((P \triangleleft b \triangleright Q) = (Q \triangleleft \neg b \triangleright P)\)
by (rule ext) (auto split: cond-splits)

lemma cond-assoc: \(((P \triangleleft b \triangleright Q) \triangleleft c \triangleright R) = (P \triangleleft b \land c \triangleright (Q \triangleleft c \triangleright R))\)
by (rule ext) (auto split: cond-splits)

lemma cond-distr: \((P \triangleleft b \triangleright (Q \triangleleft c \triangleright R)) = ((P \triangleleft b \triangleright Q) \land c \triangleright (P \triangleleft b \triangleright R))\)
by (rule ext) (auto split: cond-splits)

lemma cond-unit-T: \((P \triangleleft true \triangleright Q) = P\)
by (rule ext) (auto split: cond-splits)

lemma cond-unit-F: \((P \triangleleft false \triangleright Q) = Q\)
by (rule ext) (auto split: cond-splits)

lemma cond-L6: \((P \triangleleft b \triangleright (Q \triangleleft b \triangleright R)) = (P \triangleleft b \triangleright R)\)
by (rule ext) (auto split: cond-splits)

lemma cond-L7: \((P \triangleleft b \triangleright (P \triangleleft c \triangleright Q)) = (P \triangleleft b \lor c \triangleright Q)\)
by (rule ext) (auto split: cond-splits)

lemma cond-and-distr: \(((P \land Q) \triangleleft b \triangleright (R \land S)) = ((P \triangleleft b \triangleright R) \land (Q \triangleleft b \triangleright S))\)
by (rule ext) (auto split: cond-splits)

lemma cond-or-distr: \(((P \lor Q) \triangleleft b \triangleright (R \lor S)) = ((P \triangleleft b \triangleright R) \lor (Q \triangleleft b \triangleright S))\)
by (rule ext) (auto split: cond-splits)
lemma cond-imp-distr:
\((\langle P \rightarrow Q \rangle \triangleleft b \triangleright (R \rightarrow S)\rangle) = ((\langle P \triangleleft b \triangleright (R \rightarrow S) \rangle)\rightarrow (\langle Q \triangleright b \triangleright S \rangle))\)
by (rule ext) (auto split: cond-splits)

lemma cond-eq-distr:
\((\langle P \leftrightarrow Q \rangle \triangleleft b \triangleright (R \leftrightarrow S)\rangle) = ((\langle P \leftrightarrow b \triangleright (R \leftrightarrow S) \rangle)\rightarrow (\langle Q \leftrightarrow b \triangleright S \rangle))\)
by (rule ext) (auto split: cond-splits)

lemma comp-assoc: \((P ; ; (Q ; ; R)) = ((P ; ; Q) ; ; R)\)
by (rule ext) blast

lemma conj-comp:
\((\land a b c. P (a, b)) = (P \land Q)\)
by (rule ext) blast

lemma comp-cond-left-distr:
assumes \((\land x y z. b (x, y) = b (x, z))\)
shows \((\langle P \triangleright b \triangleright Q \rangle ; ; R) = ((P ; ; R) \triangleleft b \triangleright (Q ; ; R))\)
using assms by (auto simp: fun-eq-iff utp-defs)

lemma ndet-symm: \((P::'a relation) \cap Q = Q \cap P\)
by (rule ext) blast

lemma ndet-assoc: \((P \cap (Q \cap R) = (P \cap Q) \cap R)\)
by (rule ext) blast

lemma ndet-idemp: \((P \cap P = P)\)
by (rule ext) blast

lemma ndet-distr: \((P \cap (Q \cap R) = (P \cap Q) \cap (P \cap R))\)
by (rule ext) blast

lemma cond-ndet-distr: \((P \triangleleft b \triangleright (Q \cap R)) = ((\langle P \triangleleft b \triangleright Q \rangle) \cap (P \triangleleft b \triangleright R))\)
by (rule ext) (auto split: cond-splits)

lemma ndet-cond-distr: \((P \triangleright b \triangleright (Q \cap R)) = ((\langle P \triangleright b \triangleright Q \rangle) \cap (P \triangleright b \triangleright R))\)
by (rule ext) (auto split: cond-splits)

lemma comp-ndet-l-distr: \((\langle P \cap Q \rangle ; ; R) = ((P ; ; R) \cap (Q ; ; R))\)
by (auto simp: fun-eq-iff utp-defs)

lemma comp-ndet-r-distr: \((P ; ; (Q \cap R)) = ((P ; ; Q) \cap (P ; ; R))\)
by (auto simp: fun-eq-iff utp-defs)

lemma l2-5-1-A: \(\forall X \in S. [X \rightarrow (\prod S)]\)
by blast

lemma l2-5-1-B: \(\forall X \in S. [X \rightarrow P]\) \(\rightarrow [\prod S] \rightarrow P]\)
by blast
lemma l2-5-1: \[\left(\bigcap S \rightarrow P\right) \quad \iff \quad \left(\forall X \in S. \left[X \rightarrow P\right]\right)\]
by blast

lemma empty-disj: \[\bigcap \{\} = \text{Top}\]
by (rule ext) blast

lemma l2-5-1-2: \[\left(P \rightarrow \bigcup S\right) \quad \iff \quad \left(\forall X \in S. \left[X \rightarrow P\right]\right)\]
by blast

lemma empty-conj: \[\bigcup \{\} = \text{Bot}\]
by (rule ext) blast

lemma l2-5-2: \[
\left(\bigcap S \right) \triangleq \bigcup \{P \cap Q \mid P \in S\}\]
by (rule ext) blast

lemma l2-5-3: \[
\left(\bigcap S \right) \uplus \bigcup \{P \cup Q \mid P \in S\}\]
by (rule ext) blast

lemma l2-5-4: \[
\left(\bigcap S \right) \cdot \bigcup \{P \cdot Q \mid P \in S\}\]
by (rule ext) blast

lemma all-idem: \[\forall b. \forall a. \left(P a \right) = \left(\forall a. P a\right)\]
by (simp add: all-def)

lemma comp-unit-R [simp]: \[\left(P \cdot \Pi r\right) = P\]
by (auto simp: fun-eq-iff utp-defs)

lemma comp-unit-L [simp]: \[\left(P \cdot \Pi r\right) = P\]
by (auto simp: fun-eq-iff utp-defs)

lemmas comp-unit-simps = comp-unit-R comp-unit-L

lemma not-cond: \[\neg\left(P \triangleq \neg Q\right) = \left(\neg\left(P \triangleq \neg Q\right)\right)\]
by (rule ext) (auto split: cond-splits)

lemma cond-conj-not-distr:
\[
\left(P \triangleq \neg Q\right) \land \neg\left(R \triangleq \neg S\right) = \left(P \land \neg R\right) \triangleq \neg S \land \neg S\]
by (rule ext) (auto split: cond-splits)

lemma imp-cond-distr: \[\left(R \rightarrow \left(P \triangleq \neg Q\right)\right) = \left(\left(R \rightarrow P\right) \triangleq \neg Q \rightarrow \left(R \rightarrow Q\right)\right)\]
by (rule ext) (auto split: cond-splits)

lemma cond-imp-dist: \[\left(P \triangleq \neg Q\rightarrow R\right) = \left(\left(P \rightarrow R\right) \triangleq \neg Q \rightarrow \left(R \rightarrow Q\right)\right)\]
by (rule ext) (auto split: cond-splits)

30
lemma cond-conj-distr:
\((P \triangleleft b \triangleright Q) \land R\) =
\(((P \land R) \triangleleft b \triangleright (Q \land R))

by (rule ext) (auto split: cond-splits)

lemma cond-disj-distr:
\(((P \triangleleft b \triangleright Q) \lor R)\) =
\(((P \lor R) \triangleleft b \triangleright (Q \lor R))

by (rule ext) (auto split: cond-splits)

lemma cond-know-b:
\((b \land (P \triangleleft b \triangleright Q))\) =
\((b \land P)\)

by (rule ext) (auto split: cond-splits)

lemma cond-know-nb:
\((\neg (b)) \land (P \triangleleft b \triangleright Q))\) =
\((\neg (b)) \land Q)\)

by (rule ext) (auto split: cond-splits)

lemma cond-ass-if:
\((P \triangleleft b \triangleright Q)\) =
\(((b) \land (P \triangleleft b \triangleright Q))\)

by (rule ext) (auto split: cond-splits)

lemma cond-ass-else:
\((P \triangleleft b \triangleright Q)\) =
\((P \triangleleft b \triangleright ((\neg b) \land Q))\)

by (rule ext) (auto split: cond-splits)

lemma not-true-eq-false:
\((\neg true)\) =
\(false\)

by (rule ext) blast

lemma not-false-eq-true:
\((\neg false)\) =
\(true\)

by (rule ext) blast

lemma conj-idem:
\(((P::\alpha\ predicate) \land P)\) =
\(P\)

by (rule ext) blast

lemma disj-idem:
\(((P::\alpha\ predicate) \lor P)\) =
\(P\)

by (rule ext) blast

lemma conj-comm:
\(((P::\alpha\ predicate) \land Q)\) =
\((Q \land P)\)

by (rule ext) blast

lemma disj-comm:
\(((P::\alpha\ predicate) \lor Q)\) =
\((Q \lor P)\)

by (rule ext) blast

lemma conj-subst:
\(P = R \Longrightarrow ((P::\alpha\ predicate) \land Q)\) =
\((R \land Q)\)

by (rule ext) blast

lemma disj-subst:
\(P = R \Longrightarrow ((P::\alpha\ predicate) \lor Q)\) =
\((R \lor Q)\)

by (rule ext) blast

lemma conj-assoc:
\(((P::\alpha\ predicate) \land Q) \land S)\) =
\((P \land (Q \land S))\)

by (rule ext) blast

lemma disj-assoc:
\(((P::\alpha\ predicate) \lor Q) \lor S)\) =
\((P \lor (Q \lor S))\)

by (rule ext) blast

lemma conj-disj-abs:
\(((P::\alpha\ predicate) \land (P \lor Q))\) =
\(P\)
by (rule ext) blast

lemma disj-conj-abs: \((P::\alpha\ predicate) \lor (P \land Q)\) = \(P\)
by (rule ext) blast

lemma conj-disj-distr:\(((P::\alpha\ predicate) \land (Q \lor R))\) = \(((P \land Q) \lor (P \land R))\)
by (rule ext) blast

lemma disj-conj-distr:\(((P::\alpha\ predicate) \lor (Q \land R))\) = \(((P \lor Q) \land (P \lor R))\)
by (rule ext) blast

lemma true-conj-id: \((P \land true)\) = \(P\)
by (rule ext) blast

lemma true-disj-zero: \((P \lor true)\) = \(true\)
by (rule ext) blast

lemma true-conj-zero: \((P \land false)\) = \(false\)
by (rule ext) blast

lemma true-disj-id: \((P \lor false)\) = \(P\)
by (rule ext) blast

lemma imp-vacuous: \((false \rightarrow u)\) = \(true\)
by (rule ext) blast

lemma p-and-not-p: \((P \land \neg P)\) = \(false\)
by (rule ext) blast

lemma conj-disj-not-abs: \(((P::\alpha\ predicate) \land (\neg P \lor Q))\) = \((P \land Q)\)
by (rule ext) blast

lemma p-or-not-p: \((P \lor \neg P)\) = \(true\)
by (rule ext) blast

lemma double-negation: \((\neg \neg (P::\alpha\ predicate))\) = \(P\)
by (rule ext) blast

lemma not-conj-deMorgans: \((\neg ((P::\alpha\ predicate) \land Q))\) = \((\neg P) \lor (\neg Q)\)
by (rule ext) blast

lemma not-disj-deMorgans: \((\neg ((P::\alpha\ predicate) \lor Q))\) = \((\neg P) \land (\neg Q)\)
by (rule ext) blast

lemma p-imp-p: \((P \rightarrow P)\) = \(true\)
by (rule ext) blast

lemma imp-imp: \(((P::\alpha\ predicate) \rightarrow (Q \rightarrow R))\) = \(((P \land Q) \rightarrow R)\)
by (rule ext) blast

32
lemma imp-trans: \((P \rightarrow Q) \land (Q \rightarrow R) \rightarrow P \rightarrow R\) = true
 by (rule ext) blast

lemma p-equiv-p: \((P \leftrightarrow P) = true\)
 by (rule ext) blast

lemma equiv-eq: \(((P::\alpha\ \text{predicate}) \land Q) \lor (\neg P \land \neg Q)\) = true \(\iff (P = Q)\)
 by (auto simp add: fun-eq-iff utp-defs)

lemma equiv-eq1: \(((P::\alpha\ \text{predicate}) \leftrightarrow Q) = true\) \(\iff (P = Q)\)
 by (auto simp add: fun-eq-iff utp-defs)

lemma cond-subst: \(b = c \implies (P \triangleleft b \triangledown Q) = (P \triangleleft c \triangledown Q)\)
 by simp

lemma ex-disj-distr: \((\exists x.\ P\ x) \lor (\exists x.\ Q\ x)\) = \(\exists x.\ (P\ x \lor Q\ x)\)
 by (rule ext) blast

lemma all-disj-distr: \((\forall x.\ P\ x) \lor (\forall x.\ Q)\) = \(\forall x.\ (P\ x \lor Q)\)
 by (rule ext) blast

lemma all-conj-distr: \((\forall x.\ P\ x) \land (\forall x.\ Q\ x)\) = \(\forall x.\ (P\ x \land Q\ x)\)
 by (rule ext) blast

lemma all-triv: \((\forall x.\ \ P) = \ P\)
 by (rule ext) blast

lemma closure-true: [true]
 by blast

lemma closure-p-eq-true: \([P] \leftrightarrow (P = true)\)
 by (simp add: fun-eq-iff utp-defs)

lemma closure-equiv-eq: \([P \leftrightarrow Q] \leftrightarrow (P = Q)\)
 by (simp add: fun-eq-iff utp-defs)

lemma closure-conj-distr: \([P] \land [Q]\) = \([P \land Q]\)
 by blast

lemma closure-imp-distr: \([P \rightarrow Q] \rightarrow [P] \rightarrow [Q]\)
 by blast

lemma true-iff[simp]: \((P \leftrightarrow true) = P\)
 by blast

lemma true-imp[simp]: \((true \rightarrow P) = P\)
 by blast
9 Designs

In UTP, in order to explicitly record the termination of a program, a subset of alphabetized relations is introduced. These relations are called designs and their alphabet should contain the special boolean observational variable ok. It is used to record the start and termination of a program.

9.1 Definitions

In the following, the definitions of designs alphabets, designs and healthiness (well-formedness) conditions are given. The healthiness conditions of designs are defined by $H1$, $H2$, $H3$ and $H4$.

```ml
record alpha-d = ok::bool
type-synonym 'α alphabet-d = 'α alpha-d-scheme alphabet
type-synonym 'α relation-d = 'α alphabet-d relation
definition design::'α relation-d ⇒ 'α relation-d ⇒ 'α relation-d (('('⊢')))
where (P ⊢ Q) ≡ λ (A, A'). (ok A ∧ P (A,A')) → (ok A' ∧ Q (A,A'))
definition skip-d :: 'α relation-d (Πd)
where Πd ≡ (true ⊢ Πr)
definition J
where J ≡ λ (A, A'). (ok A → ok A') ∧ more A = more A'
type-synonym 'α Healthiness-condition = 'α relation ⇒ 'α relation
definition Healthy::'α relation ⇒ 'α Healthiness-condition ⇒ bool (- is - healthy)
where P is H healthy ≡ (P = H P)
lemma Healthy-def': P is H healthy = (H P = P)
  unfolding Healthy-def by auto
definition H1::('α alphabet-d) Healthiness-condition
where H1 (P) ≡ (ok o fst → P)
definition H2::('α alphabet-d) Healthiness-condition
where H2 (P) ≡ P :: J
```
\textbf{definition} \(H3::(\alpha \text{ alphabet-d})\) Healthiness-condition
\[\text{where } H3 \ (P) \equiv P \ ; \ \Pi d\]

\textbf{definition} \(H4::(\alpha \text{ alphabet-d})\) Healthiness-condition
\[\text{where } H4 \ (P) \equiv ((P; \ ; \text{true}) \leftrightarrow \text{true})\]

\textbf{definition} \(\sigma f::(\alpha \text{ relation-d})\) Healthiness-condition
\[\text{where } \sigma f \ D \equiv \lambda (A, A') \cdot D \ (A, A'||\text{ok:=False})\]

\textbf{definition} \(\sigma t::(\alpha \text{ relation-d})\) Healthiness-condition
\[\text{where } \sigma t \ D \equiv \lambda (A, A') \cdot D \ (A, A'||\text{ok:=True})\]

\textbf{definition} \(\text{OKAY}::(\alpha \text{ relation-d})\)
\[\text{where } \text{OKAY} \equiv \lambda (A, A') \cdot \text{ok} \ A\]

\textbf{definition} \(\text{OKAY}'::(\alpha \text{ relation-d})\)
\[\text{where } \text{OKAY}' \equiv \lambda (A, A') \cdot \text{ok} \ A'\]

\textbf{lemmas} design-defs = design-def skip-d-def J-def Healthy-def H1-def H2-def H3-def H4-def \sigma f-def \sigma t-def OKAY-def OKAY'-def

\section*{9.2 Proofs}

Proof of theorems and properties of designs and their healthiness conditions are given in the following.

\textbf{lemma} \(t\text{-comp-lz-d}; \ (\text{true}; \ ; (P \vdash Q)) = \text{true}\)
\[\text{apply} \ (\text{auto simp: fun-eq-iff design-defs})\]
\[\text{apply} \ (\text{rule-tac b=b\{ok:=False\} in comp-intro, auto})\]
\[\text{done}\]

\textbf{lemma} \(\pi\text{-comp-left-unit}; \ ((\Pi d; \ ; (P \vdash Q)) = (P \vdash Q)\)
\[\text{by} \ (\text{auto simp: fun-eq-iff design-defs})\]

\textbf{theorem} \(\text{t3-1-4-2}; \ ((P1 \vdash Q1) \& b \& (P2 \vdash Q2)) = ((P1 \& b \& P2) \vdash (Q1 \& b \& Q2)\)
\[\text{by} \ (\text{auto simp: fun-eq-iff design-defs split: cond-splits})\]

\textbf{lemma} \(\text{conv-conj-distr}; \ (\sigma t \ (P \& Q) = (\sigma t \ P \& \sigma t \ Q)\)
\[\text{by} \ (\text{auto simp: design-defs fun-eq-iff})\]

\textbf{lemma} \(\text{conv-disj-distr}; \ (\sigma t \ (P \lor Q) = (\sigma t \ P \lor \sigma t \ Q)\)
\[\text{by} \ (\text{auto simp: design-defs fun-eq-iff})\]

\textbf{lemma} \(\text{conv-imp-distr}; \ (\sigma t \ (P \rightarrow Q) = ((\sigma t \ P) \rightarrow \sigma t \ Q)\)
\[\text{by} \ (\text{auto simp: design-defs fun-eq-iff})\]

\textbf{lemma} \(\text{conv-not-distr}; \ (\neg t \ P) = (\neg (\sigma t \ P))\)
\[\text{by} \ (\text{auto simp: design-defs fun-eq-iff})\]

35
lemma div-conj-distr: \(\sigma f (P \land Q) = (\sigma f P \land \sigma f Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-disj-distr: \(\sigma f (P \lor Q) = (\sigma f P \lor \sigma f Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-imp-distr: \(\sigma f (P \rightarrow Q) = ((\sigma f P) \rightarrow \sigma f Q) \)
by (auto simp: design-defs fun-eq-iff)

lemma div-not-distr: \(\sigma f (\neg P) = (\neg(\sigma f P)) \)
by (auto simp: design-defs fun-eq-iff)

lemma ok-conv: \(\sigma t OKAY = OKAY \)
by (auto simp: design-defs fun-eq-iff)

lemma ok-div: \(\sigma f OKAY = OKAY \)
by (auto simp: design-defs fun-eq-iff)

lemma ok'-conv: \(\sigma t OKAY' = true \)
by (auto simp: design-defs fun-eq-iff)

lemma ok'-div: \(\sigma f OKAY' = false \)
by (auto simp: design-defs fun-eq-iff)

lemma H2-J-1:
assumes A: \(P \) is H2 healthy
shows \(([\lambda (A, A'). (P(A, A'\{ok := False\})) \rightarrow P(A, A'\{ok := True\}))]) \)
using A by (auto simp: design-defs fun-eq-iff)

lemma unfolding J-def by auto

lemma ok-or-not-ok: \([P(a, b\{ok := True\}); P(a, b\{ok := False\})] \implies P(a, b) \)
apply (case-tac ok b)
apply (subgoal-tac b\{ok:=True\} = b)
apply (simp-all)
apply (subgoal-tac b\{ok:=False\} = b)
apply (simp-all)
done

lemma H2-J-2-a : \(P(a,b) \rightarrow (P ;; J)(a,b) \)
unfolding J-def by auto

lemma ok-or-not-ok : \([P(a, b\{ok := True\}); P(a, b\{ok := False\})] \implies P(a, b) \)
apply (case-tac ok b)
apply (subgoal-tac b\{ok:=True\} = b)
apply (simp-all)
apply (subgoal-tac b\{ok:=False\} = b)
apply (simp-all)
done

lemma H2-J-2-b :
assumes A: \(([\lambda (A, A'). (P(A, A'\{ok := False\})) \rightarrow P(A, A'\{ok := True\}))]) \)
and B : \((P ;; J)(a,b) \)
sows P \((a,b) \)
using B
apply (auto simp: design-defs fun-eq-iff)
apply (case-tac ok b)
apply (subgoal-tac b = ba\{ok:=True\}, auto intro: A[simplified, rule-format])
apply (rule-tac s=ba and t=ba\{ok:=False\} in subst, simp-all)

36
apply (subgoal-tac b = ba, simp-all)
apply (case-tac ok ba)
apply (subgoal-tac b = ba, simp-all)
apply (subgoal-tac b = ba(\ok:=True), auto intro!: A[simplified, rule-format!])
apply (rule-tac s=ba and t=ba(\ok:=False) in subst, simp-all)
done

lemma H2-J-2 :
 assumes A: [(\A, A'). \P(A, A'[\ok:=False]) \rightarrow P(A, A'[\ok:=True])]
 shows P is H2 healthy
apply (auto simp add: H2-def Healthy-def fun-eq-iff)
apply (simp add: H2-J-2-a)
apply (rule H2-J-2-b [OF A])
apply auto
done

lemma H2-J :
[\A, A'. \P(A, A'[\ok:=False]) \rightarrow P(A, A'[\ok:=True])] = P is H2 healthy
using H2-J-1 H2-J-2 by blast

lemma design-eq1: (P ⊢ Q) = (P ⊢ P ∧ Q)
by (rule ext) (auto simp: design-defs)

lemma H1-idem: H1 o H1 = H1
by (auto simp: design-defs fun-eq-iff)

lemma H1-idem2: (H1 (H1 P)) = (H1 P)
by (simp add: H1-idem[simplified fun-eq-iff Fun.comp-def , rule-format] fun-eq-iff)

lemma H2-idem: H2 o H2 = H2
by (auto simp: design-defs fun-eq-iff)

lemma H2-idem2: (H2 (H2 P)) = (H2 P)
by (simp add: H2-idem[simplified fun-eq-iff Fun.comp-def , rule-format] fun-eq-iff)

lemma H1-H2-commute: H1 o H2 = H2 o H1
by (auto simp: design-defs fun-eq-iff split: cond-splits)

lemma H1-H2-commute2: H1 (H2 P) = H2 (H1 P)

lemma alpha-d-eqD: r = r' \rightarrow ok r = ok r' ∧ alpha-d.more r = alpha-d.more r'
by (auto simp: alpha-d.equality)

lemma design-H1: (P ⊢ Q) is H1 healthy
by (auto simp: design-defs fun-eq-iff)

lemma design-H2:
(∀ a b. P (a, b\{ok := True\})) → P (a, b\{ok := False\}) → (P ⊨ Q) is H2
healthy
by (rule H2-J-2) (auto simp: design-defs fun-eq-iff)

end

10 Reactive processes

theory Reactive-Processes
imports Designs ∼~/src/HOL/Library/Sublist

begin

Following the way of UTP to describe reactive processes, more observational
variables are needed to record the interaction with the environment. Three
observational variables are defined for this subset of relations: wait, tr and
ref. The boolean variable wait records if the process is waiting for an
interaction or has terminated. tr records the list (trace) of interactions the
process has performed so far. The variable ref contains the set of interactions
(events) the process may refuse to perform.

In this section, we introduce first some preliminary notions, useful for trace
manipulations. The definitions of reactive process alphabets and healthiness
conditions are also given. Finally, proved lemmas and theorems are listed.

10.1 Preliminaries

type-synonym ‘α trace = ‘α list

fun list-diff::‘α list ⇒ ‘α list ⇒ ‘α list option where
 list-diff l [] = Some l
 | list-diff [] l = None
 | list-diff (x#xs) (y#ys) = (if (x = y) then (list-diff xs ys) else None)

instantiation list :: (type) minus
begin
definition list-minus: l1 − l2 ≡ the (list-diff l1 l2)
instance ..
end

lemma list-diff-empty [simp]: the (list-diff l []) = l
by (cases l) auto

lemma prefix-diff-empty [simp]: l − [] = l
by (induct l) (auto simp: list-minus)

lemma prefix-diff-eq [simp]: l − l = []
by (induct l) (auto simp: list-minus)
lemma prefix-diff [simp]: (l @ t) - l = t
by (induct l) (auto simp: list-minus)

lemma prefix-subst [simp]: l @ t = m ==> m - l = t
by (auto)

lemma prefix-subst1 [simp]: m = l @ t ==> m - l = t
by (auto)

lemma prefix-diff1 [simp]: ((l @ m) @ t) - (l @ m) = t
by (rule prefix-diff)

lemma prefix-diff2 [simp]: (l @ (m @ t)) - (l @ m) = t
apply (simp only: append-assoc [symmetric])
apply (rule prefix-diff1)
done

lemma prefix-diff3 [simp]: (l @ m) - (l @ t) = (m - t)
by (induct l, auto simp: list-minus)

lemma prefix-diff4 [simp]: (a # m) - (a # t) = (m - t)
by (auto simp: list-minus)

class ev-eq =
 fixes ev-eq :: 'a ⇒ 'a ⇒ bool
 assumes refl: ev-eq a a
 assumes comm: ev-eq a b = ev-eq b a

definition filter-chan-set a cs = (∀ e ∈ cs. ev-eq a e)

lemma in-imp-not-fcs:
x ∈ S ==> ¬ filter-chan-set x S
apply (auto simp: filter-chan-set-def)
done

fun tr-filter :: 'a::ev-eq list ⇒ 'a set ⇒ 'a list where
 tr-filter [] cs = []
| tr-filter (x#xs) cs = (if (filter-chan-set x cs) then (x#(tr-filter xs cs))
 else (tr-filter xs cs))

lemma tr-filter-conc: (tr-filter (a@b) cs) = ((tr-filter a cs) @ (tr-filter b cs))
by (induct a, auto)

lemma filter-chan-set-hd-tr-filter:
tr-filter l cs ≠ [] ==> filter-chan-set (hd (tr-filter l cs)) cs
by (induct l, auto)

lemma tr-filter-conc-eq1:
(a @ b = (tr-filter (a @ c) cs)) → (b = (tr-filter c cs))
apply (induct a, auto)
apply (case-tac tr-filter (a2 @ c) cs = [], simp-all)
apply (drule filter-chan-set-hd-tr-filter [rule-format])
apply (case-tac tr-filter (a2 @ c) cs, simp-all)
done

lemma tr-filter-conc-eq2:
(a @ b = (tr-filter (a @ c) cs)) → (a = (tr-filter a cs))
apply (induct a, auto)
apply (case-tac tr-filter (a2 @ c) cs = [], simp-all)
apply (drule filter-chan-set-hd-tr-filter [rule-format])
apply (case-tac tr-filter (a2 @ c) cs, simp-all)
done

lemma tr-filter-conc-eq:
(a @ b = (tr-filter (a @ c) cs)) = (b = (tr-filter c cs) & a = (tr-filter a cs))
apply (rule, rule)
apply (rule tr-filter-conc-eq1 [rule-format, of a], clarsimp)
apply (rule tr-filter-conc-eq2 [rule-format, of a b c], clarsimp)
apply (clarsimp simp: tr-filter-conc)
done

lemma tr-filter-conc-eq3:
(b = (tr-filter (a @ c) cs)) = (∃ b1 b2. b=b1 @ b2 & b2 = (tr-filter c cs) & b1 = (tr-filter a cs))
by (rule, auto simp: tr-filter-conc)

lemma tr-filter-un:
tr-filter l (s1 ∪ s2) = tr-filter (tr-filter l s1) s2
by (induct l, auto simp: filter-chan-set-def)

instantiation list :: (ev-eq) ev-eq
begin
fun ev-eq-list where
 "ev-eq-list [] [] = True"
| "ev-eq-list l [] = False"
| "ev-eq-list [] l = False"
| "ev-eq-list (x#xs) (y#ys) = (if (ev-eq x y) then (ev-eq-list xs ys) else False)"
instance
proof
fix a::'a::ev-eq list show ev-eq a a

40
by (induct a, auto simp: ev-eq-class.refl)

next
fix a b::'a::ev-eq list show ev-eq a b = ev-eq b a
apply (cases a)
apply (cases b, simp-all add: ev-eq-class.comm)
apply (hypsubst-thin)
apply (induct b, simp-all add: ev-eq-class.comm)
apply (case-tac ev-eq aa a, simp-all add: ev-eq-class.comm)
apply (case-tac list = [], simp-all)
apply (case-tac b, simp-all)
apply (atomize)
apply (erule-tac x = hd list in allE)
apply (erule-tac x = tl list in allE)
apply (subst (asm) hd-Cons-tl, simp-all)
done
qed
end

10.2 Definitions

abbreviation subl::'a list ⇒ 'a list ⇒ bool (≤)
where l1 ≤ l2 == Sublist. prefixeq l1 l2

lemma list-diff-empty-eq: l1 − l2 = [] ⇒ l2 ≤ l1 ⇒ l1 = l2
by (auto simp: prefixeq-def)

The definitions of reactive process alphabets and healthiness conditions are given in the following. The healthiness conditions of reactive processes are defined by R1, R2, R3 and their composition R.

type-synonym 'θ refusal = 'θ set

record 'θ alpha-rp = alpha-d +
 wait:: bool
 tr :: 'θ trace
 ref :: 'θ refusal

Note that we define here the class of UTP alphabets that contain wait, tr and ref, or, in other words, we define here the class of reactive process alphabets.

type-synonym ('θ,'σ) alphabet-rp = ('θ,'σ) alpha-rp-scheme alphabet

type-synonym ('θ,'σ) relation-rp = ('θ,'σ) alphabet-rp relation

definition diff-tr s1 s2 = ((tr s1) − (tr s2))

definition spec :: [bool, bool, ('θ,'σ) relation-rp] ⇒ ('θ,'σ) relation-rp
where spec b b' P ≡ λ (A, A'). P (A[wait := b'], A'[ok := b'])

abbreviation Speciftt (≤') where (P)'t ≡ spec True True P
abbreviation Specifff \((-f\) \) where \((P)^{f}_{f} \equiv \text{spec False False } P\)

abbreviation Specifft \((-t\) \) where \((P)^{t}_{f} \equiv \text{spec True False } P\)

abbreviation Specifft \((-f\) \) where \((P)^{f}_{t} \equiv \text{spec False True } P\)

definition \(R1::((\theta, \sigma)\text{-alphabet-rp})\text{ Healthiness-condition}\)
where \(R1\ (P) \equiv \lambda (A, A'). \ (P\ (A, A')) \land (\text{tr } A \leq \text{tr } A')\)

definition \(R2::((\theta, \sigma)\text{-alphabet-rp})\text{ Healthiness-condition}\)
where \(R2\ (P) \equiv \lambda (A, A'). \ (P\ (A\ |\ \text{tr} := [] | \text{tr}) , A'\ |\ \text{tr} := \text{tr } A' - \text{tr } A | \text{tr}) \land \text{tr } A \leq \text{tr } A')\)

definition \(\Pi\text{rea}\)
where \(\Pi\text{rea} \equiv \lambda (A, A'). \ (\neg \text{ok } A \land \text{tr } A \leq \text{tr } A') \lor (\text{ok } A' \land \text{tr } A = \text{tr } A' \land (\text{wait } A = \text{wait } A') \land \text{ref } A = \text{ref } A' \land \text{more } A = \text{more } A')\)

definition \(R3::((\theta, \sigma)\text{-alphabet-rp})\text{ Healthiness-condition}\)
where \(R3\ (P) \equiv (\Pi\text{rea} \triangleleft \text{wait } o \text{ fst} \tilde{\oplus} P)\)

definition \(R::((\theta, \sigma)\text{-alphabet-rp})\text{ Healthiness-condition}\)
where \(R \equiv R3 \circ R2 \circ R1\)

lemmas \(\text{rp-defs } = R1\text{-def } R2\text{-def } \Pi\text{rea-def } R3\text{-def } R\text{-def } \text{spec-def}\)

10.3 Proofs

lemma \(\text{tr-filter-empty}\ [\text{simp}] : \text{tr-filter } l \{\} = l\)
by (induct \(l\)) (auto simp: filter-chan-set-def)

lemma \(\text{trf-imp-filters}\ : \ [xs = \text{tr-filter } ys \ cs ; \ xs \neq \{\}] \Longrightarrow \text{filter-chan-set } (hd \ xs) \ cs\)
apply (induct \(xs\), auto)
apply (induct \(ys\), auto)
apply (case-tac filter-chan-set \(a\ cs\), auto)
done

lemma \(\text{filtercs-imp-trf}\ :
[\text{filter-chan-set } x \ cs ; \ xs = \text{tr-filter } ys \ cs] \Longrightarrow x\#xs = \text{tr-filter } (x\#ys) \ cs\)
by (induct \(xs\)) auto

lemma \(\text{alpha-d-more-eqI}\ :
\text{assumes } \text{tr } r = \text{tr } r' \text{ wait } r = \text{wait } r' \text{ ref } r = \text{ref } r' \text{ more } r = \text{more } r'\)
\text{shows } \text{alpha-d-more } r = \text{alpha-d-more } r'\)
\text{using assms by } (\text{cases } r, \text{ cases } r') \text{ auto}

lemma \(\text{alpha-d-more-eqE}\ :
\text{assumes } \text{alpha-d-more } r = \text{alpha-d-more } r'\)
\text{obtains } \text{tr } r = \text{tr } r' \text{ wait } r = \text{wait } r' \text{ ref } r = \text{ref } r' \text{ more } r = \text{more } r'\)
\text{using assms by } (\text{cases } r, \text{ cases } r') \text{ auto

42
lemma alpha-rp-eqE:
assumes r = r'
obtains ok r = ok r' tr r = tr r' wait r = wait r' ref r = ref r' more r = more r'
using assms by (cases r, cases r') auto

lemma R-idem: R o R = R
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R-idem2: R (R P) = R P
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R1-idem: R1 o R1 = R1
by (auto simp: rp-defs design-defs)

lemma R1-idem2: R1 (R1 x) = R1 x
by (auto simp: rp-defs design-defs)

lemma R2-idem: R2 o R2 = R2
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def)

lemma R2-idem2: R2 (R2 x) = R2 x
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def)

lemma R3-idem: R3 o R3 = R3
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R3-idem2: R3 (R3 x) = R3 x
by (auto simp: R3-idem[simplified Fun.comp-def fun-eq-iff fun-eq-iff])

lemma R1-R2-commute: (R1 o R2) = (R2 o R1)
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def)

lemma R1-R3-commute: (R1 o R3) = (R3 o R1)
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits)

lemma R2-R3-commute: R2 o R3 = R3 o R2
by (auto simp: rp-defs design-defs fun-eq-iff prefixeq-def split: cond-splits elim: prefixE)

lemma R-abs-R1: R o R1 = R
apply (auto simp: R-def)
apply (subst R1-idem[symmetric]) back back
apply (auto)
done

lemma R-abs-R2: R o R2 = R
by (auto simp: rp-defs design-defs fun-eq-iff)
lemma R-abs-R3: $R o R3 = R$
by (auto simp: rp-defs design-defs fun-eq-iff split: cond-splits elim: prefixE)

lemma R-is-R1:
 assumes A: P is R healthy
 shows P is $R1$ healthy
proof
 have $R P = P$
 using assms by (simp-all only: Healthy-def)
 moreover
 have $(R P)$ is $R1$ healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
 ultimately show ?thesis by simp
qed

lemma R-is-R2:
 assumes A: P is R healthy
 shows P is $R2$ healthy
proof
 have $R P = P$
 using assms by (simp-all only: Healthy-def)
 moreover
 have $(R P)$ is $R2$ healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff prefixeq-def prefix-def split: cond-splits)
 ultimately show ?thesis by simp
qed

lemma R-is-R3:
 assumes A: P is R healthy
 shows P is $R3$ healthy
proof
 have $R P = P$
 using assms by (simp-all only: Healthy-def)
 moreover
 have $(R P)$ is $R3$ healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
 ultimately show ?thesis by simp
qed

lemma R-disj:
 assumes A: P is R healthy
 assumes B: Q is R healthy
 shows $(P \lor Q)$ is R healthy
proof
 have $R P = P$ and $R Q = Q$
 using assms by (simp-all only: Healthy-def)
 moreover

have \(((R\ P)\lor\ (R\ Q))\) is R healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
ultimately show \(?thesis\) by simp
qed

lemma R-disj': \(R\ (P\lor Q) = (R\ P\lor R\ Q)\)
apply (subst R-disj[simplified Healthy-def, where \(P=R\ P\)])
apply (simp-all add: R-idem2)
apply (auto simp: fun-eq-iff rp-defs split: cond-splits)
done

lemma R1-comp:
 assumes \(P\) is R1 healthy
 and \(Q\) is R1 healthy
 shows \((P; ; Q)\) is R1 healthy
proof –
 have \(R1\ P = P\) and \(R1\ Q = Q\)
 using assms by (simp-all only: Healthy-def)
moreover
 have \(((R1\ P) ; ; (R1\ Q))\) is R1 healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
ultimately show \(?thesis\) by simp
qed

lemma R1-comp2:
 assumes \(A: P\) is R1 healthy
 assumes \(B: Q\) is R1 healthy
 shows \(R1\ (P; ; Q)\) = \(((R1\ P); ; Q)\)
using A B
apply (subst R1-comp[simplified Healthy-def, symmetric])
apply (auto simp: fun-eq-iff rp-defs design-defs)
done

lemma J-is-R1: J is R1 healthy
by (auto simp: rp-defs design-defs fun-eq-iff elim: alpha-d-more-eqE)

lemma J-is-R2: J is R2 healthy
by (auto simp: rp-defs design-defs fun-eq-iff prefix-def prefixeq-def elim!: alpha-d-more-eqE intro!: alpha-d-more-eqI)

lemma R1-H2-commute2: R1 \((H2\ P)\) = H2 \((R1\ P)\)
by (auto simp add: H2-def R1-def J-def fun-eq-iff elim!: alpha-d-more-eqE intro!: alpha-d-more-eqI)

lemma R1-H2-commute: R1 o H2 = H2 o R1
by (auto simp: R1-H2-commute2)

lemma R2-H2-commute2: R2 \((H2\ P)\) = H2 \((R2\ P)\)
apply (auto simp add: fun-eq-iff rp-defs design-defs prefix-def)

45
apply (rule-tac b=ba(tr := tr a @ tr ba) in comp-intro)
apply (auto simp: fun-eq-iff prefix-def prefixeq-def
 elim!: alpha-d-more-eqE alpha-rp-eqE intro!: alpha-d-more-eqI alpha-rp.equality)
apply (rule-tac b=ba(tr := tr a @ tr ba) in comp-intro,
 auto simp: elim: alpha-d-more-eqE alpha-rp-eqE intro: alpha-d-more-eqI alpha-rp.equality)
apply (rule-tac x=zs in exI, auto)

done

lemma R2-H2-commute: R2 o H2 = H2 o R2
by (auto simp: R2-H2-commute2)

lemma R3-H2-commute2: R3 (H2 P) = H2 (R3 P)
apply (auto simp: fun-eq-iff rp-defs design-defs prefix-def
 elim: alpha-d-more-eqE split: cond-splits)

done

lemma R3-H2-commute: R3 o H2 = H2 o R3
by (auto simp: R3-H2-commute2)

lemma R-join:
 assumes x is R healthy
 and y is R healthy
 shows (x \cap y) is R healthy
proof -
 have R x = x and R y = y
 using assms by (simp-all only: Healthy-def)
 moreover
 have ((R x) \cap (R y)) is R healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
 ultimately show ?thesis by simp
qed

lemma R-meet:
 assumes A: x is R healthy
 and B: y is R healthy
 shows (x \sqcup y) is R healthy
proof -
 have R x = x and R y = y
 using assms by (simp-all only: Healthy-def)
 moreover
 have ((R x) \sqcup (R y)) is R healthy
 by (auto simp add: design-defs rp-defs fun-eq-iff split: cond-splits)
 ultimately show ?thesis by simp
qed

46
lemma R-H2-commute: \(R \circ H2 = H2 \circ R \)

apply (auto simp add: rp-defs design-defs fun-eq-iff split: cond-splits
 elim!: alpha-d-more-eqE)

apply (rule-tac b=ba in subst, auto intro!: alpha-rp-eqE)

apply (rule-tac s=ba in subst, auto intro!: alpha-rp)

apply (rule-tac b=ba in subst, auto elim!: alpha-d-more-eqI alpha-rp)

split: cond-splits

apply (rule-tac s=ba in subst, auto elim!: alpha-d-more-eqE alpha-rp-eqE)

apply (rule-tac b=ba in subst, auto intro!: alpha-rp)

apply (rule-tac s=ba in subst, auto elim!: alpha-d-more-eqI alpha-rp)

apply (rule-tac b=ba in subst, auto intro!: alpha-rp)

apply (rule-tac s=ba in subst, auto elim!: alpha-d-more-eqE alpha-rp-eqE)

done

lemma R-H2-commute2: \(R (H2 P) = H2 (R P) \)

by (auto simp: fun-eq-iff R-H2-commute[simplified fun-eq-iff Fun.comp-def])

end

11 CSP processes

theory CSP-Processes

imports Reactive-Processes

begin

A CSP process is a UTP reactive process that satisfies two additional health-
iness conditions called CSP1 and CSP2. A reactive process that satisfies
CSP1 and CSP2 is said to be CSP healthy.

11.1 Definitions

We introduce here the definitions of the CSP healthiness conditions.

definition CSP1::(('\theta', '\sigma') alphabet-rp) Healthiness-condition
where CSP1 (P) \equiv P \lor (\lambda (A, A'). \neg ok A \land tr A \leq tr A')

definition J-csp
where J-csp \equiv \lambda (A, A'). (ok A \rightarrow ok A') \land tr A = tr A' \land wait A = wait A'
\land ref A = ref A' \land more A = more A'

definition CSP2::(('\theta', '\sigma') alphabet-rp) Healthiness-condition
where CSP2 (P) \equiv P ; ; J-csp

definition is-CSP-process::(('\theta', '\sigma') relation-rp \Rightarrow bool where
is-CSP-process P \equiv P is CSP1 healthy \land P is CSP2 healthy \land P is R healthy
lemmas csp-defs = CSP1-def J-csp-def CSP2-def is-CSP-process-def

lemma is-CSP-processE1 [elim?]:
 assumes is-CSP-process P
 obtains P is CSP1 healthy P is CSP2 healthy P is R healthy
 using assms unfolding is-CSP-process-def by simp

lemma is-CSP-processE2 [elim?]:
 assumes is-CSP-process P
 obtains CSP1 P = P CSP2 P = P R P = P
 using assms unfolding is-CSP-process-def by (simp add: Healthy-def)

11.2 Proofs

Theorems and lemmas relative to CSP processes are introduced here.

lemma CSP1-CSP2-commute: CSP1 o CSP2 = CSP2 o CSP1
 by (auto simp: csp-defs fun-eq-iff)

lemma CSP2-is-H2: H2 = CSP2
 apply (clarsimp simp add: csp-defs design-defs rp-defs fun-eq-iff)
 apply (rule iffI)
 apply (erule-tac [!] comp-elim)
 apply (rule-tac [!] b=ba in comp-intro)
 apply (auto elim: alpha-d-more-eqE intro: alpha-d-more-eqI)
 done

lemma H2-CSP1-commute: H2 o CSP1 = CSP1 o H2
 apply (subst CSP2-is-H2 [simplified Healthy-def])+
 apply (rule CSP1-CSP2-commute[symmetric])
 done

lemma H2-CSP1-commute2: H2 (CSP1 P) = CSP1 (H2 P)
 by (simp add: H2-CSP1-commute[simplified Fun.comp-def fun-eq-iff, rule-format] fun-eq-iff)

lemma CSP1-R-commute:
 CSP1 (R P) = R (CSP1 P)
 by (auto simp: csp-defs rp-defs fun-eq-iff prefixeq-def split: cond-splits)

lemma CSP2-R-commute:
 CSP2 (R P) = R (CSP2 P)
 apply (subst CSP2-is-H2[symmetric])+
 apply (rule R-H2-commute2[symmetric])
 done

lemma CSP1-idem: CSP1 = CSP1 o CSP1
 by (auto simp: csp-defs fun-eq-iff)

lemma CSP2-idem: CSP2 = CSP2 o CSP2
by (auto simp: csp-defs fun-eq-iff)

lemma CSP-is-CSP1:
 assumes A: is-CSP-process P
 shows P is CSP1 healthy
 using A by (auto simp: is-CSP-process-def design-defs)

lemma CSP-is-CSP2:
 assumes A: is-CSP-process P
 shows P is CSP2 healthy
 using A by (simp add: design-defs prefixeq-def is-CSP-process-def)

lemma CSP-is-R:
 assumes A: is-CSP-process P
 shows P is R healthy
 using A by (simp add: design-defs prefixeq-def is-CSP-process-def)

lemma t-or-f-a: P (a, b) ⇒ (P (a, b (ok := True)) ∨ P (a, b (ok := False)))
apply (case-tac ok b, auto)
apply (rule-tac t = b (ok := True) and s = b in subst, simp-all)
by (subgoal-tac b = b (ok := False), simp-all)

lemma CSP2-ok-a:
 (CSP2 P) (a, b (ok := True)) ⇒ (P (a, b (ok := True)) ∨ P (a, b (ok := False)))
apply (clarsimp simp: csp-defs design-defs rp-defs split: cond-splits elim: prefixE)
apply (case-tac ok ba)
apply (rule-tac t = b (ok := True) and s = ba in subst, simp-all)
apply (drule-tac b = b (ok := False) and a = ba in back-subst)
apply (auto intro: alpha-rp.equality)
done

lemma CSP2-ok-b:
 (P (a, b (ok := True)) ∨ P (a, b (ok := False))) ⇒ (CSP2 P) (a, b (ok := True))
by (auto simp: csp-defs design-defs rp-defs)

lemma CSP2-ok:
 (CSP2 P) (a, b (ok := True)) = (P (a, b (ok := True)) ∨ P (a, b (ok := False)))
apply (rule iffI)
apply (simp add: CSP2-ok-a)
by (simp add: CSP2-ok-b)

lemma CSP2-notok-a: (CSP2 P) (a, b (ok := False)) ⇒ P (a, b (ok := False))
apply (clarsimp simp: csp-defs design-defs rp-defs)
apply (case-tac ok ba)
apply (rule-tac t = b (ok := True) and s = ba in subst, simp-all)
apply (drule-tac b = b (ok := False) and a = ba in back-subst)
apply (auto intro: alpha-rp.equality)
done
lemma CSP2-notok-b: \(P(a, b[ok:=\text{False}]) \implies (\text{CSP2} P)(a, b[ok:=\text{False}]) \)
by (auto simp: csp-defs design-defs rp-defs)

lemma CSP2-notok: \((\text{CSP2} P)(a, b[ok:=\text{False}]) = P(a, b[ok:=\text{False}]) \)
apply (rule iffI)
apply (simp add: CSP2-notok-a)
by (simp add: CSP2-notok-b)

lemma CSP2-t-f:
 assumes A: (\(\text{CSP2} (R (r \vdash p))\))(a, b)
 and B: ((\(\text{CSP2} (R (r \vdash p))\))(a, b[ok:=\text{False}])) \lor
 ((\(\text{CSP2} (R (r \vdash p))\))(a, b[ok:=\text{True}])) \implies Q
 shows Q
apply (rule B)
apply (rule disjI2)
apply (insert A)
apply (auto simp add: csp-defs design-defs rp-defs)
done

lemma disj-CSP1:
 assumes P is CSP1 healthy
 and Q is CSP1 healthy
 shows \((P \lor Q)\) is CSP1 healthy
using assms by (auto simp: csp-defs design-defs rp-defs fun-eq-iff)

lemma disj-CSP2:
 \(P \text{ is CSP2 healthy} \implies Q \text{ is CSP2 healthy} \implies (P \lor Q) \text{ is CSP2 healthy} \)
by (simp add: CSP2-is-H2[symmetric] Healthy-def' design-defs comp-ndet-l-distr)

lemma disj-CSP:
 assumes A: is-CSP-process P
 assumes B: is-CSP-process Q
 shows is-CSP-process \((P \lor Q)\)
apply (simp add: is-CSP-process-def Healthy-def)
apply (subst disj-CSP2[simplified Healthy-def, symmetric])
apply (rule A[THEN CSP-is-CSP2, simplified Healthy-def])
apply (rule B[THEN CSP-is-CSP2, simplified Healthy-def], simp)
apply (subst disj-CSP1[simplified Healthy-def, symmetric])
apply (rule A[THEN CSP-is-CSP1, simplified Healthy-def])
apply (rule B[THEN CSP-is-CSP1, simplified Healthy-def], simp)
apply (subst R-disj[simplified Healthy-def])
apply (rule A[THEN CSP-is-R, simplified Healthy-def])
apply (rule B[THEN CSP-is-R, simplified Healthy-def], simp)
done

lemma seq-CSP1:
 assumes A: P is CSP1 healthy
 assumes B: Q is CSP1 healthy
 shows \((P ; ; Q)\) is CSP1 healthy
using A B by (auto simp: csp-defs design-defs rp-defs fun-eq-iff)

lemma seq-CSP2:
 assumes A: Q is CSP2 healthy
 shows (P ;; Q) is CSP2 healthy
using A by (auto simp: CSP2-is-H2[symmetric] H2-J[symmetric])

lemma seq-R:
 assumes P is R healthy
 and Q is R healthy
 shows (P ;; Q) is R healthy
proof –
 have R P = P and R Q = Q
 using assms by (simp-all only: Healthy-def)
 moreover have (R P ;; R Q) is R healthy
 apply (auto simp add: design-defs rp-defs prefixeq-def fun-eq-iff split: cond-splits)
 apply (erule-tac x = zs @ zsa in allE, auto split: cond-splits)+
 apply (rule-tac b = a in comp-intro, auto split: cond-splits)
 apply (rule-tac x = zs in exI, auto split: cond-splits)
 apply (rule-tac b = ba (| tr := tr a @ tr ba) in comp-intro, auto split: cond-splits)+
 done
 ultimately show ?thesis by simp
qed

lemma seq-CSP:
 assumes A: P is CSP1 healthy
 and B: P is R healthy
 and C: is-CSP-process Q
 shows is-CSP-process (P ;; Q)
apply (auto simp add: is-CSP-process-def)
apply (subst seq-CSP1[simplified Healthy-def])
apply (rule A[simplified Healthy-def])
apply (rule CSP-is-CSP1[OF C, simplified Healthy-def])
apply (simp add: Healthy-def, subst CSP1-idem, auto)
apply (subst seq-CSP2[simplified Healthy-def])
apply (rule CSP-is-CSP2[OF C, simplified Healthy-def])
apply (simp add: Healthy-def, subst CSP2-idem, auto)
apply (subst seq-R[simplified Healthy-def])
apply (rule B[simplified Healthy-def])
apply (rule CSP-is-R[OF C, simplified Healthy-def])
apply (simp add: Healthy-def, subst R-idem2, auto)
done

lemma rd-ind-wait: (R(¬(P f f) ⊢ (P e f))) = (R(¬(λ (A, A'). P (A, A’ | ok := False))) ⊢ (λ (A, A'). P (A, A’ | ok := True))))
apply (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits)
apply (subgoal-tac a[tr := [], wait := False] = a[tr := []], auto)
apply (subgoal-tac a[tr := [], wait := False] = a[tr := []], auto)
apply (subgoal-tac a[tr := [], wait := False] = a[tr := []], auto)
apply (subgoal-tac a[tr := [], wait := False] = a[tr := []], auto)
apply (subgoal-tac a[tr := [], wait := False] = a[tr := []], auto)
apply (rule-tac t=a[tr := [], wait := False] and s=a[tr := []] in subst, simp-all)
done

lemma rd-H1: \((R([^\neg](\lambda (A, A'). P (A, A'\{ok := False\}))))
\vdash (\lambda (A, A'). P (A, A'\{ok := True\}))) =
(R ((\neg H1 (\lambda (A, A'). P (A, A'\{ok := False\}))))
\vdash H1 (\lambda (A, A'). P (A, A'\{ok := True\}))) =
(R(H1 o H2) (\lambda (A, A'). P (A, A'\{ok := False\}))))
by (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits elim: alpha-d-move-eqE)
apply (subgoal-tac b[tr := zs, ok := False] = ba[ok := False], auto intro: alpha-d.equality)
apply (subgoal-tac b[tr := zs, ok := False] = ba[ok := False], auto intro: alpha-d.equality)
apply (subgoal-tac b[tr := zs, ok := False] = ba[ok := False], auto intro: alpha-d.equality)
apply (subgoal-tac b[tr := zs, ok := True] = ba[ok := True], auto intro: alpha-d.equality)
apply (subgoal-tac b[tr := zs, ok := True] = ba[ok := True], auto intro: alpha-d.equality)
done

lemma rd-H1-H2-R-H1-H2:
(R ((\neg (H1 o H2) (\lambda (A, A'). P (A, A'\{ok := False\}))))
\vdash (H1 o H2) (\lambda (A, A'). P (A, A'\{ok := True\}))) =
(R(H1 o H2) (\lambda (A, A'). P (A, A'\{ok := False\})))
apply (auto simp: design-defs rp-defs fun-eq-iff split: cond-splits)
apply (erule notE) back back
apply (rule-tac b=ba in comp-intro, auto)
apply (rule-tac t=ba[ok := False] and s=ba in subst, auto intro: alpha-d.equality)
apply (erule notE) back back
apply (rule-tac b=ba in comp-intro, auto)
apply (rule-tac t=ba[ok := False] and s=ba in subst, auto intro: alpha-d.equality)
apply (case-tac ok ba)
apply (rule-tac b=ba in comp-intro, auto)
apply (rule-tac t=ba[ok := True] and s=ba in subst, auto)
apply (erule notE) back
apply (rule-tac b=ba in comp-intro, auto)
apply (rule-tac t=ba[ok := False] and s=ba in subst, auto intro: alpha-d.equality)
done

lemma CSP1-is-R1-H1:
assumes \(P\) is R1 healthy
shows \(CSP1 P = R1 (H1 P) \)
using assms
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-is-R1-H1-2: \(CSP1 (R1 P) = R1 (H1 P) \)
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-R1-commute: \(CSP1 o R1 = R1 o CSP1 \)
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-R1-commute2: \(CSP1 (R1 P) = R1 (CSP1 P) \)
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits)

lemma CSP1-is-R1-H1-b:
\((P = (R o R1 o H1 o H2) P) = (P = (R o CSP1 o H2) P) \)
apply (simp add: fun-eq-iff)
apply (subst H1-H2-commute2)
apply (subst R1-H2-commute2)
apply (subst CSP1-is-R1-H1-2[symmetric])
apply (subst H2-CSP1-commute2)
apply (subst R1-H2-commute2[symmetric])
apply (subst CSP1-R1-commute2)
apply (subst R-abs-R1 [simplified Fun.comp-def fun-eq-iff])
apply (auto)
done

lemma CSP1-join:
assumes A: \(x \text{ is } CSP1 \text{ healthy} \)
and B: \(y \text{ is } CSP1 \text{ healthy} \)
shows \((x \cap y) \text{ is } CSP1 \text{ healthy} \)
using A B
by (simp add: Healthy-def CSP1-def fun-eq-iff utp-defs)

lemma CSP2-join:
assumes A: \(x \text{ is } CSP2 \text{ healthy} \)
and B: \(y \text{ is } CSP2 \text{ healthy} \)
shows \((x \cap y) \text{ is } CSP2 \text{ healthy} \)
using A B
apply (simp add: design-defs csp-defs fun-eq-iff)
apply (rule allI)
apply (rule allI)
apply (erule-tac x=a in allE)
apply (erule-tac x=a in allE)
apply (erule-tac x=b in allE)
by (auto)

lemma CSP1-meet:
assumes A: \(x \text{ is } CSP1 \text{ healthy} \)
and B: \(y \text{ is } CSP1 \text{ healthy} \)
shows \((x \sqcup y)\) is CSP1 healthy using \(A B\)
apply (simp add: Healthy-def CSP1-def fun-eq-iff utp-defs)
apply (rule allI)
apply (rule allI)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=b\) in allE)+
by (auto)

lemma CSP2-meet:
assumes \(A: x\) is CSP2 healthy
and \(B: y\) is CSP2 healthy
shows \((x \sqcup y)\) is CSP2 healthy using \(A B\)
apply (simp add: Healthy-def CSP2-def fun-eq-iff)
apply (rule allI)+
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=a\) in allE)
apply (erule-tac \(x=b\) in allE)+
apply (auto)
apply (erule-tac \(b=ca\) in comp-intro)
apply (auto simp: J-csp-def)
done

lemma CSP-join:
assumes \(A: \text{is-CSP-process } x\)
and \(B: \text{is-CSP-process } y\)
shows \(\text{is-CSP-process } (x \sqcap y)\) using \(A B\)
by (simp add: is-CSP-process-def CSP1-join CSP2-join R-join)

lemma CSP-meet:
assumes \(A: \text{is-CSP-process } x\)
and \(B: \text{is-CSP-process } y\)
shows \(\text{is-CSP-process } (x \sqcap y)\) using \(A B\)
by (simp add: is-CSP-process-def CSP1-meet CSP2-meet R-meet)

11.3 CSP processes and reactive designs

In this section, we prove the relation between CSP processes and reactive designs.

lemma rd-is-CSP1: \((R (r \vdash p))\) is CSP1 healthy
by (auto simp: csp-defs design-defs rp-defs fun-eq-iff split: cond-splits elim: prefixE)

lemma rd-is-CSP2:
assumes \(A: \forall a b. r (a, b\{ok := True\}) \rightarrow r (a, b\{ok := False\})\)
shows \((R (r \vdash p))\) is CSP2 healthy
apply (subst CSP2-is-H2[symmetric])
apply (simp add: Healthy-def)
apply (subst R-H2-commute2[symmetric])
apply (subst design-H2[simplified Healthy-def], auto simp: A)
done

lemma rd-is-CSP:
 assumes A: \(\forall\ a\ b.\ r\ (a,\ b\|ok:=\text{True})\) \(\rightarrow\) \(r\ (a,\ b\|ok:=\text{False})\)
 shows is-CSP-process \((R (r \vdash p))\)
apply (simp add: is-CSP-process-def Healthy-def fun-eq-iff)
apply (subst R-idem2)
apply (subst rd-is-CSP2[simplified Healthy-def, symmetric], rule A)
apply (subst rd-is-CSP1[simplified Healthy-def, symmetric], simp)
done

lemma CSP-is-rd:
 assumes A: is-CSP-process \(P\)
 shows \(P = (\neg\neg(P f f) \vdash (P t f))\)
apply (subst rd-ind-wait)
apply (subst rd-H1)
apply (subst rd-H1-H2)
apply (subst rd-H1-H2-R-H1-H2)
apply (subst R-abs-R1[symmetric])
apply (subst CSP1-is-R1-H1-b)
apply (subst CSP2-is-H2)
apply (simp)
apply (subst CSP-is-CSP2[OF A, simplified Healthy-def, symmetric])
apply (subst CSP-is-CSP1[OF A, simplified Healthy-def, symmetric])
apply (subst CSP-is-R[OF A, simplified Healthy-def, symmetric], simp)
done

done

12 Circus actions

theory Circus-Actions
imports ~/src/HOL/HOLCF/HOLCF CSP-Processes
begin
In this section, we introduce definitions for Circus actions with some useful theorems and lemmas.
default-sort type
12.1 Definitions

The Circus actions type is defined as the set of all the CSP healthy reactive
processes.

```csp
typedef ( ϑ::ev-eq, σ) action = { p::( ϑ, σ) relation-rp. is-CSP-process p} 
morphisms relation-of action-of 
proof –
  have R (false ⊢ true) ∈ { p::( ϑ, σ) relation-rp. is-CSP-process p} 
  by (auto intro: rd-is-CSP) 
  thus ?thesis by auto 
qed 
```

print-theorems

The type-definition introduces a new type by stating a set. In our case, it is
the set of reactive processes that satisfy the healthiness-conditions for CSP-
processes, isomorphic to the new type. Technically, this construct introduces
two constants (morphisms) definitions relation_of and action_of as well as
the usual axioms expressing the bijection action_of (relation_of ?x) = ?x

```csp
lemma relation-of-CSP: is-CSP-process (relation_of x) 
proof –
  have (relation_of x) :{ p. is-CSP-process p} by (rule relation_of) 
  then show is-CSP-process (relation_of x) .. 
qed 
```

```csp
lemma relation-of-CSP1: (relation_of x) is CSP1 healthy 
by (rule CSP-is-CSP1[OF relation-of-CSP]) 
```

```csp
lemma relation-of-CSP2: (relation_of x) is CSP2 healthy 
by (rule CSP-is-CSP2[OF relation-of-CSP]) 
```

```csp
lemma relation-of-R: (relation_of x) is R healthy 
by (rule CSP-is-R[OF relation-of-CSP]) 
```

12.2 Proofs

In the following, Circus actions are proved to be an instance of the Complete_Lattice
class.

```csp
lemma relation-of-spec-f-f:
  ∀ a b. (relation_of y → relation_of x) (a, b) →
    (relation_of y)f (a|tr := [], b) →
    (relation_of x)f (a|tr := [], b) 
by (auto simp: spec-def) 
```

```csp
lemma relation-of-spec-t-f:
  ∀ a b. (relation_of y → relation_of x) (a, b) →
```

56
(relation-of y) \{ a|tr := \{\}, b \} \Rightarrow
(relation-of x) \{ a|tr := \{\}, b \}

by (auto simp: spec-def)

instantiation action::(ev-eq, type) below
begin
definition ref-def : P \sqsubseteq Q \equiv [(relation-of Q) \to (relation-of P)]
instantiation ..
end

instance action :: (ev-eq, type) po
proof
 fix x y z::('a, 'b) action
 {
 show x \sqsubseteq x by (simp add: ref-def utp-defs)
 next
 assume x \sqsubseteq y and y \sqsubseteq z then show x \sqsubseteq z
 by (simp add: ref-def utp-defs)
 next
 assume A:x \sqsubseteq y and B:y \sqsubseteq x then show x = y
 by (auto simp add: ref-def relation-of-inject[symmetric] fun-eq-iff)
 }
qed

instance action :: (ev-eq, type) lattice
begin
definition inf-action : (inf P Q \equiv action-of ((relation-of P) \cap (relation-of Q)))
definition sup-action : (sup P Q \equiv action-of ((relation-of P) \cup (relation-of Q)))
definition less-eq-action : (less-eq (P::('a, 'b) action) Q \equiv P \sqsubseteq Q)
definition less-action : (less (P::('a, 'b) action) Q \equiv P \sqsubseteq Q \land \neg Q \sqsubseteq P)
instance
proof
 fix x y z::('a, 'b) action
 {
 show (x < y) = (x \leq y \land \neg y \leq x)
 by (simp add: less-action less-eq-action)
 next
 show (x \leq x) by (simp add: less-action)
 next
 assume x \leq y and y \leq z
 then show x \leq z
 by (simp add: less-action ref-def utp-defs)
 next
 assume x \leq y and y \leq x
 then show x = y
 by (auto simp add: less-action ref-def relation-of-inject[symmetric] utp-defs)
 next

57
show $\inf x y \leq x$
apply (auto simp add: less-eq-action inf-action ref-def
csp-defs design-defs rp-defs)
apply (subst action-of-inverse, simp add: Healthy-def)
apply (insert relation-of-CSP[where $x=x$])
apply (insert relation-of-CSP[where $x=y$])
apply (simp-all add: CSP-join)
done

show $\inf x y \leq y$
apply (auto simp add: less-eq-action inf-action ref-def csp-defs)
apply (subst action-of-inverse, simp add: Healthy-def)
apply (insert relation-of-CSP[where $x=x$])
apply (insert relation-of-CSP[where $x=y$])
apply (simp-all add: CSP-join)
done

next
assume $x \leq y$ and $x \leq z$
then show $x \leq \inf y z$
apply (auto simp add: less-eq-action inf-action ref-def impl-def csp-defs)
apply (erule tac $x=a$ in allE, erule tac $x=a$ in allE)
apply (erule tac $x=b$ in allE)+
apply (subst (asm) action-of-inverse)
apply (simp add: Healthy-def)
apply (insert relation-of-CSP[where $x=z$])
apply (insert relation-of-CSP[where $x=y$])
apply (auto simp add: CSP-join)
done

next
show $x \leq \sup x y$
apply (auto simp add: less-eq-action sup-action ref-def
impl-def csp-defs)
apply (subst (asm) action-of-inverse)
apply (simp add: Healthy-def)
apply (insert relation-of-CSP[where $x=x$])
apply (insert relation-of-CSP[where $x=y$])
apply (auto simp add: CSP-meet)
done

next
show $y \leq \sup x y$
apply (auto simp add: less-eq-action sup-action ref-def
impl-def csp-defs)
apply (subst (asm) action-of-inverse)
apply (simp add: Healthy-def)
apply (insert relation-of-CSP[where $x=x$])
apply (insert relation-of-CSP[where $x=y$])
apply (auto simp add: CSP-meet)
done
next
assume $y \leq x$ and $z \leq x$
then show $\sup y, z \leq x$
apply (auto simp add: less-eq-action sup-action ref-def impl-def csp-defs)
apply (erule-tac x = a in allE)
apply (erule-tac x = a in allE)
apply (erule-tac x = b in allE)+
apply (subst action-of-inverse)
apply (simp add: Healthy-def)
apply (insert relation-of-CSP[where $x = z$])
apply (insert relation-of-CSP[where $x = y$])
apply (auto simp add: CSP-meet)
done

}\qed

end

lemma bot-is-action: $R (\text{false} \vdash \text{true}) \in \{ p. \text{is-CSP-process } p \}$
by (auto intro: rd-is-CSP)

lemma bot-eq-true: $R (\text{false} \vdash \text{true}) = R \text{true}$
by (auto simp: fun-eq-iff design-defs rp-defs split: cond-splits)

instantiation action :: (ev-eq, type) bounded-lattice
begin

definition bot-action : (bot::('a, 'b) action) ≡ action-of ($R(\text{false} \vdash \text{true})$)
definition top-action : (top::('a, 'b) action) ≡ action-of ($R(\text{true} \vdash \text{false})$)

instance
proof
fix x::('a, 'b) action
{
 show bot ≤ x
 unfolding bot-action
 apply (auto simp add: less-action less-eq-action ref-def bot-action)
apply (subst action-of-inverse) apply (rule bot-is-action)
apply (subst bot-eq-true)
apply (subst (asm) CSP-is-rd)
apply (rule relation-of-CSP)
apply (auto simp add: csp-defs rp-defs fun-eq-iff split: cond-splits)
done
next
show x ≤ top
apply (auto simp add: less-action less-eq-action ref-def top-action)
apply (subst (asm) action-of-inverse)
apply (simp)
}
\textbf{lemma} \texttt{relation-of-top}: \texttt{relation-of top} = R(\texttt{true} \vdash \texttt{false})
\begin{verbatim}
apply (simp add: top-action)
apply (subst action-of-inverse)
apply (simp)
apply (rule rd-is-CSP)
apply (auto simp add: utp-defs design-defs rp-defs)
done
\end{verbatim}

\textbf{lemma} \texttt{relation-of-bot}: \texttt{relation-of bot} = R \texttt{true}
\begin{verbatim}
apply (simp add: bot-action)
apply (subst action-of-inverse)
apply (simp add: bot-is-action[simplified], rule bot-eq-true)
done
\end{verbatim}

\textbf{lemma} \texttt{non-emptyE}: \texttt{assumes A \neq \{} \texttt{obtains x where x : A}
\begin{verbatim}
using assms by (auto simp add: ex-in-conv [symmetric])
\end{verbatim}

\textbf{lemma} \texttt{CSP1-Inf}:
\texttt{assumes *: A \neq \{} \texttt{shows (l} \texttt{relation-of A) is CSP1 healthy}
\begin{verbatim}
proof –
 have (\texttt{l} \texttt{relation-of A) = CSP1 (l} \texttt{relation-of A})
 proof
 fix P
 note * then
 show (P \in \bigcup \{ \{p. P p \} \mid P. P \in \texttt{relation-of A}\}) = CSP1 (\lambda Aa. Aa \in \bigcup \{ \{p. P p \} \mid P. P \in \texttt{relation-of A}\}) P
 apply (intro iffI)
 apply (simp-all add: csp-defs)
 apply (rule disj-introC, simp)
 apply (erule disj-elim, simp-all)
 apply (cases P, simp-all)
 apply (erule non-emptyE)
 apply (rule-tac x=Collect (relation-of x) in exI, simp)
 apply (rule conjI)
 apply (rule-tac x=(relation-of x) in exI, simp)
 apply (subst CSP-is-rd, simp add: relation-of-CSP)
\end{verbatim}

60
apply (auto simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
done
qed

then show \(\prod \) relation-of ' A) is CSP1 healthy by (simp add: design-defs)
qed

lemma CSP2-Inf:
assumes "\(\star \):A \neq \{\}
shows \(\prod \) relation-of ' A) is CSP2 healthy
proof –

have \(\prod \) relation-of ' A) = CSP2 (\(\prod \) relation-of ' A)

proof

fix P

note \(\star \) then

show \(P \in \{ \{ p. P p \} | P. P \in relation-of ' A \} = CSP2 (\lambda Aa. Aa \in \bigcup \{ \{ p. P p \} | P. P \in relation-of ' A \}) P \)

apply (intro iffI)
apply (simp-all add: csp-defs)
apply (cases P, simp-all)
apply (erule exE)
apply (rule-tac b=b in comp-intro, simp-all)
apply (rule-tac x=x in exI, simp)
apply (erule comp-elim, simp-all)
apply (erule exE | erule conjE)+
apply (simp-all)
apply (rule-tac x=Collect Pa in exI, simp)
apply (rule conjI)
apply (rule-tac x=Pa in exI, simp)
apply (erule Set imageE, simp add: relation-of)
apply (subst CSP-is-rd, simp add: relation-of-CSP)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (auto simp add: csp-defs rp-defs prefixeq-def design-defs fun-eq-iff split: cond-splits)

apply (subgoal-tac b\(| tr := zs, ok := False \)} = c\(| tr := zs, ok := False \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := False \)} = c\(| tr := zs, ok := False \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := False \)} = c\(| tr := zs, ok := False \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := False \)} = c\(| tr := zs, ok := False \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := False \)} = c\(| tr := zs, ok := False \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := False \)} = c\(| tr := zs, ok := False \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := True \)} = c\(| tr := zs, ok := True \}), auto)
apply (subgoal-tac b\(| tr := zs, ok := True \)} = c\(| tr := zs, ok := True \}), auto)
done
qed

then show \(\prod \) relation-of ' A) is CSP2 healthy by (simp add: design-defs)
qed

lemma R-Inf:
assumes "\(\star \):A \neq \{\}
shows (\prod relation-of ' A) is R healthy
proof -
 have (\prod relation-of ' A) = R (\prod relation-of ' A)
 proof
 fix P
 show (P \in \bigcup \{\{p. P \in relation-of ' A\}\}) = R (\lambda Aa. Aa \in \bigcup \{\{p. P \in relation-of ' A\}\}) P
 apply (cases P, simp-all)
 apply (rule)
 apply (simp-all add: csp-defs rp-defs split: cond-splits)
 apply (erule exE)
 apply (erule exE | erule conjE)+
 apply (simp-all)
 apply (erule Set.imageE, simp add: relation-of)
 apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
 apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
 apply (rule_tac x = x in exI, simp)
 apply (rule conjI)
 apply (rule_tac x = (relation-of xa) in exI, simp)
 apply (substitution CSP-is-rd, simp add: relation-of-CSP)
 apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
 apply (erule exE)
 apply (rule conjI)
 apply (rule_tac x = (relation-of xa) in exI, simp)
 apply (substitution CSP-is-rd, simp add: relation-of-CSP)
 apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
 apply (substitution (asm) CSP-is-rd, simp add: relation-of-CSP)
 apply (simp add: csp-defs prefixeq-def design-defs rp-defs fun-eq-iff split: cond-splits)
 done
 qed
 then show (\prod relation-of ' A) is R healthy by (simp add: design-defs)
 qed

lemma CSP-Inf:
 assumes A \neq \{\}
 shows is-CSP-process (\prod relation-of ' A)
 unfolding is-CSP-process-def
 using assms CSP1-Inf CSP2-Inf R-Inf
 by auto
lemma Inf-is-action: \(A \neq {} \implies \bigcap \) relation-of ' \(A \in \{ p. \ \text{is-CSP-process} \ p \} \)
by (auto dest!: CSP-Inf)

lemma CSP1-Sup: \(A \neq {} \implies (\bigcup \) relation-of ' \(A \) is CSP1 healthy
apply (auto simp add: design-defs csp-defs fun-eq-iff)
apply (subst CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs prefixeq-def design-defs rp-defs split: cond-splits)
done

lemma CSP2-Sup: \(A \neq {} \implies (\bigcup \) relation-of ' \(A \) is CSP2 healthy
apply (simp add: design-defs csp-defs fun-eq-iff)
apply (rule allI)+
apply (rule)
apply (rule-tac b=in comp-intro, simp-all)
apply (erule comp-elim, simp-all)
apply (rule allI)
apply (erule-tac x in allE)
apply (rule impl)
apply (case-tac (\(\exists P. \ x = Collect P \ & \ P \in \) relation-of ' \(A \)), simp-all)
apply (erule exE | erule conjE)+
apply (simp-all)
apply (erule Set.imageE, simp add: relation-of)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
apply (auto simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := False \} = c\{ tr := tr c \ & \ tr aa, ok := False \} \), simp-all)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := False \} = c\{ tr := tr c \ & \ tr aa, ok := False \} \), simp-all)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := False \} = c\{ tr := tr c \ & \ tr aa, ok := False \} \), simp-all)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := False \} = c\{ tr := tr c \ & \ tr aa, ok := False \} \), simp-all)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := False \} = c\{ tr := tr c \ & \ tr aa, ok := False \} \), simp-all)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := True \} = c\{ tr := tr c \ & \ tr aa, ok := True \} \), simp-all)
apply (subgoal-tac ba\(\{ tr := tr c \ & \ tr aa, ok := True \} = c\{ tr := tr c \ & \ tr aa, ok := True \} \), simp-all)
done

lemma R-Sup: \(A \neq {} \implies (\bigcup \) relation-of ' \(A \) is R healthy
apply (simp add: rp-defs design-defs csp-defs fun-eq-iff)
apply (rule allI)+
apply (rule)
apply (simp split: cond-splits)

63
apply (case-tac wait a, simp-all)
apply (erule non-emptyE)
apply (erule-tac x=Collect (relation-of x) in allE, simp-all)
apply (case-tac relation-of x (a, b), simp-all)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule-tac x=(relation-of x) in allE, simp-all)
apply (rule conjI)
apply (rule allI)
apply (erule-tac x=Collect (relation-of x) in allE, simp-all)
apply (case-tac (∃ P. x = Collect P & P ∈ relation-of ' A), simp-all)
apply (erule exE | erule conjE)+
apply (simp-all)
apply (erule Set.imageE, simp add: relation-of)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule non-emptyE)
apply (erule-tac x=Collect (relation-of x) in allE, simp-all)
apply (case-tac relation-of x (a, b), simp-all)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule-tac x=(relation-of x) in allE, simp-all)
apply (simp split: cond-splits)
apply (rule allI)
apply (rule impI)
apply (erule Set.imageE, simp add: relation-of)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (rule allI)
apply (rule impI)
apply (erule Set.imageE, simp add: relation-of)
apply (subst (asm) CSP-is-rd, simp add: relation-of-CSP)
apply (case-tac relation-of xa (a(tr := []), b(tr := tr b - tr a)), simp-all)
apply (subst (asm) CSP-is-rd) back back back
apply (simp add: relation-of-CSP, subst CSP-is-rd, simp add: relation-of-CSP)
apply (simp add: csp-defs design-defs rp-defs split: cond-splits)
apply (erule-tac x=P in allE, simp-all)
done

lemma CSP-Sup: A ≠ {} ⇒ is-CSP-process ([relation-of ' A)
unfolding is-CSP-process-def using CSP1-Sup CSP2-Sup R-Sup by auto
lemma Sup-is-action: \(A \neq \{\} \implies \bigsqcup \text{relation-of} \ A \in \{p. \text{is-CSP-process} p\} \)
by (auto dest!: CSP-Sup)

lemma relation-of-Sup:
\(A \neq \{\} \implies \text{relation-of} (\bigsqcup \text{relation-of} \ A) = \bigsqcup \text{relation-of} \ A \)
by (auto simp: action-of-inverse dest!: Sup-is-action)

instantiation action :: (ev-eq, type) complete-lattice
begin

definition Sup-action:
\((\text{Sup} (S:: (a, b) \text{action set})) \equiv \text{if} S=\{\} \text{then bot else} \text{action-of} \bigsqcup \text{relation-of} \ S)\)
definition Inf-action:
\((\text{Inf} (S:: (a, b) \text{action set})) \equiv \text{if} S=\{\} \text{then top else} \text{action-of} \bigsqcap \text{relation-of} \ S)\)

instance
proof
fix \(A::(a, b) \text{action set and} z::(a, b) \text{action}\)
{
 fix \(x::(a, b) \text{action}\)
 assume \(x \in A\)
 then show \(\text{Inf} A \leq x\)
 apply (auto simp add: less-action less-eq-action Inf-action ref-def)
 apply (subst (asm) action-of-inverse)
 apply (auto intro: Inf-is-action[simplified])
 done
}
 note rule1 = this
{
 assume \(*:: \forall x. x \in A \implies z \leq x\)
 show z \leq \text{Inf} A
 proof (cases \(A = \{\}\))
 case True
 then show \(?thesis by (simp add: Inf-action)\)
 next
 case False
 show \(?thesis\)
 using *
 apply (auto simp add: Inf-action)
 using \(A \neq \{\}\)
 apply (simp add: less-eq-action Inf-action ref-def)
 apply (subst (asm) action-of-inverse)
 apply (subst (asm) ex-in-cone[symmetric])
 apply (erule exE)
 apply (auto intro: Inf-is-action[simplified])
 done
 qed
}
 fix \(x::(a, b) \text{action}\)
 assume \(x \in A\)
\end
then show $x \leq (\Sup A)$
apply (auto simp add: less-action less-eq-action Sup-action ref-def)
apply (subst (asm) action-of-inverse)
apply (auto intro: Sup-is-action[simplified])
done

} note rule2 = this
{
assume $\forall x. x \in A \Longrightarrow x \leq z$
then show $\Sup A \leq z$
apply (auto simp add: Sup-action)
apply atomize
apply (case-tac A = {}, simp-all)
apply (insert rule2)
apply (auto simp add: less-action less-eq-action Sup-action ref-def)
apply (subst (asm) action-of-inverse)
apply (auto intro: Sup-is-action[simplified])
apply (auto intro: Sup-is-action[simplified])
done

} { show $\Inf (\{\}::(\'a, \'b) \text{ action set}) = \text{top by simp add: Inf-action}$ } { show $\Sup (\{\}::(\'a, \'b) \text{ action set}) = \text{bot by simp add: Sup-action}$ }
qed

end

end

13 Circus variables

theory Var-list
imports Main
begin

Circus variables are represented by a stack (list) of values. They are characterized by two functions, select and update. The Circus variable type is defined as a tuple (select * update) with a list of values instead of a single value.

type-synonym $(\'a, \sigma) \text{ var-list} = (\sigma \Rightarrow \'a \text{ list})*((\'a \text{ list} \Rightarrow \'a \text{ list}) \Rightarrow \sigma \Rightarrow \sigma)$

The select function returns the top value of the stack.

definition select :: $(\'a, \'r) \text{ var-list} \Rightarrow \'r \Rightarrow \'a$
where select $f \equiv \lambda A. \text{hd} ((\text{fst} f) A)$

The increase function pushes a new value to the top of the stack.

definition increase :: $(\'a, \'r) \text{ var-list} \Rightarrow \'a \Rightarrow \'r \Rightarrow \'r$
where increase $f \text{ val} \equiv (\text{snd f}) (\lambda l. \text{val}#l)$
The *increase0* function pushes an arbitrary value to the top of the stack.

Definition

`increase0 :: (′a, ′r) var-list ⇒ ′r ⇒ ′r`
where \[\text{increase0 } f \equiv (\text{snd } f) (\lambda l. ((\text{SOME } \text{val. } \text{True}) \# l)) \]

The *decrease* function pops the top value of the stack.

Definition

`decrease :: (′a, ′r) var-list ⇒ ′r ⇒ ′r`
where \[\text{decrease } f \equiv (\text{snd } f) (\lambda l. (\text{tl } l)) \]

The *update* function updates the top value of the stack.

Definition

`update :: (′a, ′r) var-list ⇒ (′a ⇒ ′a) ⇒ ′r ⇒ ′r`
where \[\text{update } f \text{ upd} \equiv (\text{snd } f) (\lambda l. (\text{upd} \ (\text{hd } l)) \# (\text{tl } l)) \]

The *update0* function initializes the top of the stack with an arbitrary value.

Definition

`update0 :: (′a, ′r) var-list ⇒ ′r ⇒ ′r`
where \[\text{update0 } f \equiv (\text{snd } f) (\lambda l. ((\text{SOME } \text{upd. } \text{True}) \ (\text{hd } l)) \# (\text{tl } l)) \]

axiomatization where \[\text{select-increase}: (\text{select } v \ (\text{increase } v \ a \ s)) = a \]

The *VAR-LIST* function allows to retrieve a Circus variable from its name.

Syntax

- **VAR-LIST** :: id ⇒ (′a, ′r) var-list (VAR′-LIST -)

Translations

VAR-LIST x =⇒ (x, -update-name x)

end

14 Denotational semantics of Circus actions

Theory

Denotational-Semantics

Imports

Circus-Actions Var-list

Begin

In this section, we introduce the definitions of Circus actions denotational semantics. We provide the proof of well-formedness of every action. We also provide proofs concerning the monotonicity of operators over actions.

14.1 Skip

Definition

`Skip :: (′ϑ::ev-eq′σ) action`
where \[\text{Skip } \equiv \text{action-of} \]

\[(R \ (\text{true} \ \vdash \ \lambda (A, A'). \ \text{tr } A' = \text{tr } A \land \neg \text{wait } A' \land \text{more } A = \text{more } A')) \]

Lemma

\[\text{Skip-is-action:} \]

\[(R \ (\text{true} \ \vdash \ \lambda (A, A'). \ \text{tr } A' = \text{tr } A \land \neg \text{wait } A' \land \text{more } A = \text{more } A')) \in \{ \text{p. is-CSP-process p} \} \]

apply (smp)

apply (rule rd-is-CSP)

by auto
lemmas Skip-is-CSP = Skip-is-action[simplified]

lemma relation-of-Skip:
relation-of Skip =
 \(R \) (true \(\vdash \) \(\lambda \) (A, A'). tr A' = tr A \land \neg\text{wait} A' \land \text{more} A = \text{more} A'))
by (simp add: Skip-def action-of-inverse Skip-is-CSP)

definition CSP3::((\'d::ev-eq,\'s) alphabet-rp) Healthiness-condition
where CSP3 (\(P \)) \equiv relation-of Skip ; ; \(P \)

definition CSP4::((\'d::ev-eq,\'s) alphabet-rp) Healthiness-condition
where CSP4 (\(P \)) \equiv \(P \) ; ; relation-of Skip

lemma Skip-is-CSP3: (relation-of Skip) is CSP3 healthy
apply (auto simp: relation-of-Skip rp-defs design-defs fun-eq-iff CSP3-def)
apply (split cond-splits, simp-all)+
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all)+
prefer 3
apply (split cond-splits, simp-all)+
apply (auto simp add: prefixeq-def)
done

lemma Skip-is-CSP4: (relation-of Skip) is CSP4 healthy
apply (auto simp: relation-of-Skip rp-defs design-defs fun-eq-iff CSP4-def)
apply (split cond-splits, simp-all)+
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all)+
prefer 3
apply (split cond-splits, simp-all)+
apply (auto simp add: prefixeq-def)
done

lemma Skip-comp-absorb: (relation-of Skip ; ; relation-of Skip) = relation-of Skip
apply (auto simp: relation-of-Skip fun-eq-iff rp-defs true-def design-defs)
apply (clarsimp split: cond-splits)+
apply (case-tac ok aa, simp-all)
apply (erule disjE)+
apply (clarsimp simp: prefixeq-def)
apply (clarsimp simp: prefixeq-def)
apply (erule disjE)+
apply (clarsimp simp: prefixeq-def)
apply (clarsimp simp: prefixeq-def)
apply (erule disjE)+
apply (clarsimp simp: prefixeq-def)
apply (erule disjE)+
apply (clarsimp simp: prefixeq-def)
apply (clarsimp simp: prefixeq-def)
apply (case_tac ok aa, simp-all)
apply (clarsimp simp: prefixeq-def)
apply (clarsimp split: cond-splits+)
apply (rule_tac b=a in comp-intro)
apply (clarsimp split: cond-splits+)
apply (rule_tac b=a in comp-intro)
apply (clarsimp split: cond-splits+)
done

14.2 Stop

definition Stop :: (′ϑ::ev-eq,′σ) action
where Stop ≡ action-of \((R (true ⊨ \lambda (A, A'). tr A' = tr A ∧ wait A')))\)

lemma Stop-is-action:
\((R (true ⊨ \lambda (A, A'). tr A' = tr A ∧ wait A'))) \in \{p. is-CSP-process p\}\)
apply (simp)
apply (rule rd-is-CSP)
by auto

lemmas Stop-is-CSP = Stop-is-action[simplified]

lemma relation-of-Stop:
relation-of Stop = \((R (true ⊨ \lambda (A, A'). tr A' = tr A ∧ wait A')))\)
by (simp add: Stop-def action-of-inverse Stop-is-CSP)

lemma Stop-is-CSP3: (relation-of Stop) is CSP3 healthy
apply (auto simp: relation-of-Stop relation-of-Skip rp-defs design-defs fun-eq-iff CSP3-def)
apply (rule_tac b=a in comp-intro)
apply (split cond-splits, auto)
apply (split cond-splits)+
apply (simp-all)
apply (case_tac ok aa, simp-all)
apply (case_tac tr aa ≤ tr ba, simp-all)
apply (case_tac ok ba, simp-all)
apply (case_tac tr ba ≤ tr c, simp-all)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (rule_tac x=zs@zsa in exI, simp)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule_tac x=zs@zsa in exI, simp)
apply (split cond-splits)+

69
apply \(\text{(simp-all add: true-def)}\)
apply \((\text{erule disjE})\)
apply \((\text{simp add: prefixeq-def})\)
apply \((\text{erule exE | erule conjE})+\)
apply \((\text{erule \(\text{exI, simp}\)}\)
apply \((\text{auto simp add: prefixeq-def})\)
done

lemma Stop-is-CSP\(^4\); (relation-of Stop) is CSP\(^4\) healthy
apply \((\text{auto simp: relation-of-Stop relation-of-Skip rp-defs design-defs fun-eq-iff\n\quad CSP\(^4\)-def})\)
apply \((\text{rule-tac b=b in comp-intro})\)
apply \((\text{split cond-splits, simp-all})+\)
apply \((\text{case-tac ok aa, simp-all})\)
apply \((\text{case-tac tr aa \(\leq\) tr ba, simp-all})\)
apply \((\text{case-tac ok ba, simp-all})\)
apply \((\text{case-tac tr ba \(\leq\) tr c, simp-all})\)
apply \((\text{rule disjI1})\)
apply \((\text{simp add: prefixeq-def})\)
apply \((\text{erule exE})+\)
apply \((\text{erule \(\text{exI, simp}\)}\)
apply \((\text{rule disjI1})\)
apply \((\text{simp add: prefixeq-def})\)
apply \((\text{erule exE | erule conjE})+\)
apply \((\text{erule \(\text{exI, simp}\)}\)
apply \((\text{split cond-splits})+\)
apply \((\text{simp-all add: true-def})\)
apply \((\text{erule disjE})\)
apply \((\text{simp add: prefixeq-def})\)
apply \((\text{erule exE | erule conjE})+\)
apply \((\text{erule \(\text{exI, simp}\)}\)
apply \((\text{auto simp add: prefixeq-def})\)
done

14.3 Chaos
definition Chaos :: \((\theta::ev-eq,\sigma)\) action
where Chaos \equiv action-of \((R(false \vdash true))\)

lemma Chaos-is-action: \((R(false \vdash true))\) \(\in\) \{p. is-CSP-process p\}
apply \((\text{simp})\)
apply \((\text{rule rd-is-CSP})\)
by \text{auto}

lemmas Chaos-is-CSP = Chaos-is-action[simplified]

lemma relation-of-Chaos: relation-of Chaos = \((R(false \vdash true))\)
by \text{(simp add: Chaos-def action-of-inverse Chaos-is-CSP)}
14.4 State update actions

definition Pre :: σ relation ⇒ 'σ predicate
where Pre sc ≡ λA. ∃ A'. sc (A, A')

definition state-update-before :: σ relation ⇒ ('θ::ev-eq, σ) action ⇒ ('σ, σ) action
where state-update-before sc Ac = action-of (R ((λ(A, A'). (Pre sc) (more A)) ⊢
(A(A, A'), sc (more A, more A') & ¬wait A' & tr A = tr A')))

lemma state-update-before-is-action:
(R ((λ(A, A'). (Pre sc) (more A)) ⊢
(λ(A, A'). sc (more A, more A') & ¬wait A' & tr A = tr A')) ;; relation-of Ac) ∈ {p. is-CSP-process p}
apply (simp)
apply (rule seq-CSP)
apply (rule rd-is-CSP1)
apply (auto simp: R-idem2 Healthy-def relation-of-CSP)
done

lemmas state-update-before-is-CSP = state-update-before-is-action[simplified]

lemma relation-of-state-update-before:
relation-of (state-update-before sc Ac) = (R ((λ(A, A'). (Pre sc) (more A)) ⊢
(λ(A, A'). sc (more A, more A') & ¬wait A' & tr A = tr A')) ;; relation-of Ac)
by (simp add: state-update-before-def action-of-inverse state-update-before-is-CSP)

lemma mono-state-update-before: mono (state-update-before sc)
by (auto simp: mono-def less-eq-action ref-def relation-of-state-update-before design-defs
rp-defs fun-eq-iff
split: cond-splits dest: relation-of-spec-f-f[simplified]
relation-of-spec-t-f[simplified])

lemma state-update-before-is-CSP3: relation-of (state-update-before sc Ac) is CSP3
healthy
apply (auto simp: relation-of-state-update-before relation-of-Skip rp-defs design-defs
fun-eq-iff CSP3-def)
apply (rule-tac b=aa in comp-intro)
apply (split cond-splits, auto)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro)
apply (split cond-splits, simp-all)+
apply (case-tac ok aa, simp-all)
apply (case-tac tr aa ≤ tr ab, simp-all)
apply (case-tac ok ab, simp-all)
apply (case-tac tr ab ≤ tr bb, simp-all)
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (rule-tac b=bb in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule disjI1)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (rule-tac b=bb in comp-intro)
apply (split cond-splits, simp-all)+
apply (simp-all add: true-def)
apply (erule disjE)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac x=zs@zsa in exI, simp)
apply (auto simp add: prefixeq-def)
done

lemma state-update-before-is-CSP4:
assumes A : relation-of Ac is CSP4 healthy
shows relation-of (state-update-before sc Ac) is CSP4 healthy
apply (auto simp: relation-of-state-update-before relation-of-Skip rp-defs design-defs fun-eq-iff CSP4-def)
apply (rule seq-CSP)
apply (auto simp: relation-of-CSP[patterns is-CSP-process-def] simplified)
apply (rule rd-is-CSP)
done

definition state-update-after :: 'σ relation ⇒ ('σ::ev-eq,'σ) action ⇒ ('σ,'σ) action
where state-update-after sc Ac = action-of relation-of Ac ; ; R (true ⊢ (λ(A, A'). sc (more A, more A') & ¬wait A' & tr A = tr A'))

lemma state-update-after-is-action:
(relation-of Ac ; ; R (true ⊢ (λ(A, A'). sc (more A, more A') & ¬wait A' & tr A = tr A'))) ∈ { p. is-CSP-process p}
apply (simp)
apply (rule seq-CSP)
apply (auto simp: relation-of-CSP[simplified is-CSP-process-def])
apply (rule rd-is-CSP, auto)
done

lemmas state-update-after-is-CSP = state-update-after-is-action[simplified]

lemma relation-of-state-update-after:
relation-of (state-update-after sc Ac) = (relation-of Ac ; ; R (true ⊢ (λ(A, A'). sc
(more A, more A') & ¬wait A' & $tr A = tr A'$))

by (simp add: state-update-after-def action-of-inverse state-update-after-is-CSP)

lemma mono-state-update-after: mono (state-update-after sc)
by (auto simp: mono-def less-eq-action ref-def relation-of-state-update-after design-defs
 rp-defs fun-eq-iff
 split: cond-splits dest: relation-of-spec-f-f[simplified]
 relation-of-spec-t-f[simplified])

lemma state-update-after-is-CSP3:
 assumes $A : relation-of Ac$ is CSP3 healthy
 shows relation-of (state-update-after sc Ac) is CSP3 healthy
apply (auto simp: relation-of-state-update-after relation-of-Skip rp-defs design-defs
 fun-eq-iff CSP3-def)
apply (rule-tac $b = aa$ in comp-intro)
apply (split cond-splits, auto)
apply (rule-tac $b = bb$ in comp-intro, simp-all)
apply (subst $A[simplified design-defs rp-defs CSP3-def relation-of-Skip]$)
apply (auto simp: rp-defs)
done

lemma state-update-after-is-CSP4: relation-of (state-update-after sc Ac) is CSP4
healthy
apply (auto simp: relation-of-state-update-after relation-of-Skip rp-defs design-defs
 fun-eq-iff CSP4-def)
apply (rule-tac $b = c$ in comp-intro)
apply (rule-tac $b = ba$ in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac $b = bb$ in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (case-tac ok bb, simp-all)
apply (case-tac tr $bb \leq tr c$, simp-all)
apply (case-tac ok ca, simp-all)
apply (case-tac tr $ca \leq tr c$, simp-all)
apply (simp add: prefixeq-def)
apply (erule exE)+
apply (erule-tac $x = zs@zsa$ in allE, simp)
apply (rule-tac $b = bb$ in comp-intro, simp-all)
apply (split cond-splits, simp-all add: true-def)+
apply (case-tac ok ca, simp-all)
apply (case-tac tr $ca \leq tr c$, simp-all)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (rule-tac $x = zsa@zs$ in exI, simp)
apply (rule-tac $b = bb$ in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (case-tac tr $bb \leq tr c$, simp-all)
apply (simp add: prefixeq-def)
apply (erule exE | erule conjE)+
apply (erule-tac x=zsa@zs in allE, simp)
apply (auto simp add: prefixeq-def)
done

14.5 Sequential composition

definition Seq::
 (\'\'\': ev-eq, \'\': action) \Rightarrow
 (\'\'\': ev-eq, \'\': action) \Rightarrow
 (\'\'\': ev-eq, \'\': action)
where P \'; \'; Q \equiv action-of (relation-of P \'; ; relation-of Q)

lemma Seq-is-action: (relation-of P \'; ; relation-of Q) \in \{p. is-CSP-process p\}
apply (simp)
apply (rule seq-CSP[OF relation-of-CSP[THEN CSP-is-CSP1] relation-of-CSP[THEN
 CSP-is-R] relation-of-CSP])
done

lemmas Seq-is-CSP = Seq-is-action[simplified]

lemma relation-of-Seq: relation-of (P \'; \'; Q) = (relation-of P \'; ; relation-of Q)
by (simp add: Seq-def action-of-inverse Seq-is-CSP)

lemma mono-Seq: mono (op \'; \'; P)
 by (auto simp: mono-def less-eq-action ref-def relation-of-Seq)

lemma CSP3-imp-left-Skip:
 assumes A: relation-of P is CSP3 healthy
 shows (Skip \'; \'; P) = P
apply (subst relation-of-inject[symmetric])
apply (simp add: relation-of-Seq A[simplified design-defs CSP3-def, symmetric])
done

lemma CSP4-imp-right-Skip:
 assumes A: relation-of P is CSP4 healthy
 shows (P \'; \'; Skip) = P
apply (subst relation-of-inject[symmetric])
apply (simp add: relation-of-Seq A[simplified design-defs CSP4-def, symmetric])
done

lemma Seq-assoc: (A \'; \'; (B \'; \'; C)) = ((A \'; \'; B) \'; \'; C)
by (auto simp: relation-of-inject[symmetric] fun-eq-iff relation-of-Seq rp-defs design-defs)

lemma Skip-absorb: (Skip \'; \'; Skip) = Skip
by (auto simp: Skip-comp-absorb relation-of-inject[symmetric] relation-of-Seq)

14.6 Internal choice

definition
\[Ndet::('\vartheta', ev\cdot eq, '\sigma) action \Rightarrow ('\vartheta', '\sigma) action \Rightarrow ('\vartheta', '\sigma) action \text{ (infixl } \sqcap 18) \]

where \(P \sqcap Q \equiv \text{action-of } ((\text{relation-of } P) \lor (\text{relation-of } Q)) \)

Lemma \(Ndet\text{-is-action}: ((\text{relation-of } P) \lor (\text{relation-of } Q)) \in \{ p. \text{is-CSP}\cdot \text{process } p \} \)

apply (simp)
apply (rule disj-CSP)
apply (simp-all add: relation-of-CSP)
done

Lemmas \(Ndet\text{-is-CSP} = Ndet\text{-is-action}[\text{simplified}] \)

Lemma relation-of-Ndet: relation-of \((P \sqcap Q) = ((\text{relation-of } P) \lor (\text{relation-of } Q)) \)
by (simp add: \text{Ndet-def action-of-inverse} Ndet-is-CSP)

Lemma mono-Ndet: mono \((\text{op } \sqcap) P\)
by (auto simp: mono-def less-eq-action ref-def relation-of-Ndet)

14.7 External choice

Definition
\[\text{Det::('\vartheta', ev\cdot eq, '\sigma) action } \Rightarrow ('\vartheta', '\sigma) action \Rightarrow ('\vartheta', '\sigma) action \text{ (infixl } [+] 18) \]

where \(P [+] Q \equiv \text{action-of}(R((\neg ((\text{relation-of } P)'f_j) \land \neg((\text{relation-of } Q)'f_j)) \vdash ((\text{relation-of } P)'f_j \land (\text{relation-of } Q)'f_j)) \)

\(< \lambda(A, A'), tr A = tr A' \land wait A'\triangleright \)
\(((\text{relation-of } P)'f_j \lor (\text{relation-of } Q)'f_j))) \in \{ p. \text{is-CSP}\cdot \text{process } p \} \)

apply (simp add: spec-def)
apply (rule rd-is-CSP)
apply (auto)
done

Lemmas \(\text{Det\text{-is-CSP} = Det\text{-is-action}[simplified]} \)

Lemma relation-of-Det:
relation-of \((P \sqint Q) = (R((\neg ((\text{relation-of } P)'f_j) \land \neg((\text{relation-of } Q)'f_j)) \vdash ((\text{relation-of } P)'f_j \land (\text{relation-of } Q)'f_j)) \)

\(< \lambda(A, A'). tr A = tr A' \land wait A'\triangleright \)
\(((\text{relation-of } P)'f_j \lor (\text{relation-of } Q)'f_j))) \in \{ p. \text{is-CSP}\cdot \text{process } p \} \)

apply (unfold Det-def)
apply (rule action-of-inverse)
apply (rule Det-is-action)
14.8 Reactive design assignment

definition
\[\text{rd-assign } s = \text{action-of} \ (R \ (\text{true} \vdash \lambda(A, A'). \ \text{ref } A' = \text{ref } A \land \text{tr } A' = \text{tr } A \land \neg \text{wait } A' \land \text{more } A' = s)) \]

lemma \(\text{rd-assign-is-action:} \)
\[(R \ (\text{true} \vdash \lambda(A, A'). \ \text{ref } A' = \text{ref } A \land \text{tr } A' = \text{tr } A \land \neg \text{wait } A' \land \text{more } A' = s))) \in \{\text{p. is-CSP-process } p\} \]

by \(\text{auto simp:} \)

apply \(\text{rule rd-is-CSP} \)

lemmas \(\text{rd-assign-is-CSP} = \text{rd-assign-is-action[simplified]} \)

lemma \(\text{relation-of-rd-assign}: \)
\[\text{relation-of} \ (\text{rd-assign } s) = \]
\[(R \ (\text{true} \vdash \lambda(A, A'). \ \text{ref } A' = \text{ref } A \land \text{tr } A' = \text{tr } A \land \neg \text{wait } A' \land \text{more } A' = s)) \]

by \(\text{simp add: rd-assign-def action-of-inverse rd-assign-is-CSP} \)

14.9 Local state external choice

definition
\[\text{Loc}:: \ ' \sigma \Rightarrow (\forall \theta::\text{ev-eq,}' \sigma) \text{ action } \Rightarrow (\forall \theta, '\sigma) \text{ action } \Rightarrow (\forall \theta, '\sigma) \text{ action } \]
\[((\forall \text{loc } - ' \cdot -) \sqcup (\forall \text{loc } - ' \cdot -)) \]

where
\[(\text{loc } s1 \bullet P) \sqcup (\text{loc } s2 \bullet Q) \equiv ((\text{rd-assign } s1); \ 'P \sqcup ((\text{rd-assign } s2); \ 'Q) \]

14.10 Schema expression

definition \(\text{Schema :: }' \sigma \text{ relation } \Rightarrow (\forall \theta::\text{ev-eq,}' \sigma) \text{ action where} \)
\[\text{Schema } sc \equiv \text{action-of}(R \ ((\lambda(A, A'). \ \text{Pre } sc \ (\text{more } A)) \vdash \)
\[(\lambda(A, A'). \ sc (\text{more } A, \text{more } A') \land \neg \text{wait } A' \land \text{tr } A = \text{tr } A'))) \]

lemma \(\text{Schema-is-action:} \)
\[(R \ ((\lambda(A, A'). \ \text{Pre } sc \ (\text{more } A)) \vdash \)
\[(\lambda(A, A'). \ sc (\text{more } A, \text{more } A') \land \neg \text{wait } A' \land \text{tr } A = \text{tr } A'))) \in \{\text{p. is-CSP-process } p\} \]

apply \(\text{simp} \)

apply \(\text{rule rd-is-CSP} \)

76
apply (auto)
done

lemmas Schema-is-CSP = Schema-is-action[simplified]

lemma relation-of-Schema:
relation-of (Schema sc) = (R ((\(A, A\')) (Pre sc) (more A)) \[R ((\(A, A\')) sc (more A, more A')) \& \neg wait A' \& tr A = tr A'))
by (simp add: Schema-def action-of-inverse Schema-is-CSP)

lemma Schema-is-state-update-before: Schema u = state-update-before u Skip
apply (subst relation-of-inject[symmetric])
apply (auto simp: relation-of-Schema relation-of-state-update-before relation-of-Skip
rp-defs fun-eq-iff
design-defs)
apply (split cond-splits, simp-all)
apply (rule comp-intro)
apply (split cond-splits, simp-all)+
apply (rule comp-intro)
apply (split cond-splits, simp-all)+
prefer 3
apply (split cond-splits, simp-all)+
apply (auto simp: prefixeq-def)
done

14.11 Parallel composition

type-synonym 'a local-state = ('a x ('a => 'a'))

fun MergeSt :: 'a local-state => 'a local-state => ('a, 'a) relation-rp where
MergeSt (s1,s1') (s2,s2') = ((\(S, S\')). (s1' s1) (more S) = more S');
((\(S, (\'a, \'a)) alphabet-rp, S\')). (s2' s2) (more S) = more S')

definition listCons ::'a => 'a list list => 'a list list (- ## -) where
a ## l = ((map (Cons a)) l)

fun ParMergel :: 'a:ev-eq list => 'a list => 'a list set => 'a list list where
ParMergel [] [] cs = [[]]
| ParMergel [] (b#tr2) cs = (if (filter-chan-set b cs) then [[]]
else (b ### (ParMergel [] tr2 cs)))
| ParMergel (a#tr1) [] cs = (if (filter-chan-set a cs) then [[]]
else (a ### (ParMergel tr1 [] cs)))
| ParMergel (a#tr1) (b#tr2) cs =
 (if (filter-chan-set a cs)
 then (if (ev-eq a b)
 then (a ### (ParMergel tr1 tr2 cs))
 else (if (filter-chan-set b cs)
 then [[]]
 else (b ### (ParMergel (a#tr1) tr2 cs)))))

77
else (if (filter-chan-set b cs)
 then (a #\# (ParMerge tr1 (b#tr2) cs))
 else (a #\# (ParMerge tr1 (b#tr2) cs)))
\@ (b #\# (ParMerge (a#(tr1) tr2 cs)'))

definition ParMerge::'\@:ev-eq list \Rightarrow '\@ list \Rightarrow '\@ list set
where
ParMerge tr1 tr2 cs = set (ParMerge tr1 tr2 cs)

lemma set-Cons1: tr1 \in set l \Rightarrow a \# tr1 \in op # a \# set l
by (auto)

lemma tr-in-set-eq: (tr1 \in op # b \# set l) = (tr1 \neq [] \land hd tr1 = b \land tl tr1 \in set l)
by (induct l) auto

definition M-par::((\@:ev-eq, 'a) alpha-rp-schema \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a)
\Rightarrow ('\@, 'a) alpha-rp-schema \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a)
\Rightarrow ('\@ set) \Rightarrow ('\@, 'a) relation-rp
where
M-par s1 x1 s2 x2 cs =
(\langle\lambda(S, S'). (\langle\text{diff-tr S'} S' \in \text{ParMerge (diff-tr s1 S) (diff-tr s2 S)} \rangle \land
\text{ev-eq (tr-filter \langle tr1 \rangle cs) (tr-filter \langle tr2 \rangle cs)}) \rangle \land
\langle\langle\lambda(S, S'). (\langle\text{wait s1} \lor \text{wait s2} \rangle \land \text{ref S'} \subseteq ((((\text{ref s1}) \cup (\text{ref s2})) \cap \text{cs})) \cup ((\text{ref s1}) \cap (\text{ref s2}) - \text{cs}))\rangle \langle\langle\lambda(S, S'). (\langle\text{wait s1} \lor \text{wait s2} \rangle) \land \text{MergeSt (more s1, x1) (more s2, x2)}\rangle\rangle)

definition Par::((\@:ev-eq, 'a) action \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) \Rightarrow ('\@, 'a) action \Rightarrow ('\@, 'a) action
\Rightarrow ('\@ set) \Rightarrow ('\@, 'a) action
where
AI [] ns1 | cs | ns2 [] A2 \equiv (\langle\text{action-of (R (\langle\lambda (S, S') \rangle \land
\langle\text{spec False (wait S) (relation-of A2) \Rightarrow (\lambda (S, -. tr2 = (tr S)) (S, S')} \land
\langle\text{tr-filter \langle tr1 \rangle cs) = (tr-filter \text{tr2 cs})\rangle \rangle \land
\langle\langle\langle\langle\langle\lambda(S, S'). (\langle\text{spec False (wait S) (relation-of A1) \Rightarrow (\lambda (\text{relation-of A2}) (A, s1) \land
\langle\langle\text{relation-of A2}) (A, s2)\rangle
\rangle A2 \rangle \rangle (\langle\langle A1 \rangle\rangle (\langle\lambda (A, A') \rangle (A, s1)))))

lemma Par-is-action: (R (\langle\lambda (S, S') \rangle.
\Rightarrow (\langle\lambda (S, S'). (\langle\text{relation-of A1}) \Rightarrow (\lambda (\text{relation-of A2}) (A, s1)) \land
\langle\text{spec False (wait S) (relation-of A2)} \Rightarrow (\lambda (S, -. tr2 = (tr S)) (S, S'}) \land
\langle\text{tr-filter \langle tr1 \rangle cs) = (tr-filter \text{tr2 cs})\rangle \rangle \land
\langle\langle\langle\langle\langle\lambda(S, S'). (\langle\text{spec False (wait S) (relation-of A1)} \Rightarrow (\lambda (\text{relation-of A2}) (A, s1) \land
\langle\text{relation-of A2}) (A, s2)\rangle
\rangle A2 \rangle \rangle (\langle\langle A1 \rangle\rangle (\langle\lambda (A, A') \rangle (A, s1)))))

\@ (b #\# (ParMerge (a#(tr1) tr2 cs)'))

78
\((\text{relation-of } A2)^f_f (A, s2)) \); M-par s1 ns1 s2 ns2 cs (S, S')))) \in \{ p. \\
\text{is-CSP-process } p \}\)

apply (simp)
apply (rule rd-is-CSP)
apply (blast)
done

lemmas Par-is-CSP = Par-is-action[simplified]

lemma relation-of-Par:
relation-of (A1 | ns1 | cs | ns2 | A2) = (R (\lambda (S, S'). \\
\sim (\exists tr1 tr2. ((relation-of A1)^f_f ; (\lambda (S, S'). tr1 = (tr S)) (S, S')) \\
\land (\text{spec False (wait S) (relation-of A2)} ; (\lambda (S, S'). tr2 = (tr S)) (S, S')) \\
\land ((\text{tr-filter tr1 cs} = (\text{tr-filter tr2 cs}))) \land \\
\sim (\exists tr1 tr2. (\text{spec False (wait S) (relation-of A1)} ; (\lambda (S, S'). tr1 = tr S)) (S, S')) \\
\land ((\text{relation-of A2})^f_f ; (\lambda (S, S'). tr2 = (tr S)) (S, S')) \\
\land ((\text{tr-filter tr1 cs} = (\text{tr-filter tr2 cs}))) \land \\
(\lambda (S, S'). (\exists s1 s2. ((\lambda (A, A'). (\text{relation-of A1})^f_f (A, s1)) \\
\land (\text{relation-of A2})^f_f (A, s2)))); M-par s1 ns1 s2 ns2 cs (S, S'))))))

apply (unfold Par-def)
apply (rule action-of-inverse)
apply (rule Par-is-action)
done

lemma mono-Par: mono (\lambda Q. P | ns1 | cs | ns2 | Q)

apply (auto simp: mono-def less-eq-action ref-def relation-of-Par design-defs
fun-eq-iff rp-defs
split: cond-splits)
apply (auto simp: rp-defs dest: relation-of-spec-f-f[simplified] relation-of-spec-t-f[simplified])
apply (erule-tac x=tr ba in allE, auto)
apply (erule notE)
apply (auto dest: relation-of-spec-f-f relation-of-spec-t-f)
done

14.12 Local parallel block

definition ParLoc::'a \Rightarrow (\sigma \Rightarrow \sigma \Rightarrow \sigma \Rightarrow \sigma) \Rightarrow (\sigma \Rightarrow \sigma \Rightarrow \sigma \Rightarrow \sigma) \Rightarrow (\text{rd-assign s1}'; P) [ns1 | cs | ns2 | Q) \equiv ((rd-assign s1)'; P) [ns1 | cs | ns2 | (rd-assign s2)'; Q)

14.13 Assignment

definition ASSIGN::(v, \sigma) \Rightarrow \text{var-list} \Rightarrow (\sigma \Rightarrow v) \Rightarrow (\text{rd-assign \sigma} \Rightarrow \sigma) \Rightarrow \text{action-of} (R (true \Rightarrow (\lambda (S, S'). tr S' = tr S \land \sim \text{wait S'} \land \\
\text{more} S' = (\text{update} x (\lambda -. (e (more S))) (more S))))))
synt -assign::id ⇒ (′σ ⇒ ′v) ⇒ (′ϑ, ′σ) action (· := ·)

translations y := vv ⇒ CONST ASSIGN (VAR y) vv

lemma Assign-is-action:
\((R (true ⊢ (\lambda (S, S'). tr S' = tr S ∧ ¬wait S' ∧ (more S' = (update x (\lambda-. (e (more S)))) (more S)))))) \in \{p. is-CSP-process p\} \)
apply (simp)
apply (rule rd-is-CSP)
apply (blast)
done

lemmas Assign-is-CSP = Assign-is-action[simplified]

lemma relation-of-Arrign:
relation-of (ASSIGN x e) = (R (true ⊢ (\lambda (S, S'). tr S' = tr S ∧ ¬wait S' ∧ (more S' = (update x (\lambda-. (e (more S)))) (more S))))))
by (simp add: ASSIGN-def action-of-inverse Assign-is-CSP)

lemma Assign-is-state-update-before: ASSIGN x e = state-update-before (λ (s, s') . s' = (update x (λ-. (e s))) s) Skip
apply (subst relation-of-inject[symmetric])
Pre-def update-def design-defs)
apply (split cond-splits, simp-all+)
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all+)
apply (rule-tac b=b in comp-intro)
apply (split cond-splits, simp-all+)
derer
apply (split cond-splits, simp-all+)
prefer 3
apply (split cond-splits, simp-all+)
apply (auto simp add: prefixeq-def)
done

14.14 Variable scope

definition Var::(′v, ′σ) var-list ⇒(′ϑ, ′σ) action ⇒ (′ϑ::ev-eq,′σ) action where
Var v A ≡ action-of(
 (R(true ⊢ (\lambda (A, A'). \exists a. tr A' = tr A ∧ ¬wait A' ∧ more A' = (increase v a (more A)))));
 (relation-of A);
 (R(true ⊢ (\lambda (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A)))))))

syntax -var::idt ⇒ (′ϑ, ′σ) action ⇒ (′ϑ, ′σ) action (var - [1000] 999)
translations var y • Act => CONST Var (VAR-LIST y) Act

lemma Var-is-action:
((R(true ⊢ (λ (A, A'). ∃ a. tr A' = tr A ∧ ¬wait A' ∧ more A' = (increase v a (more A)))));
 (relation-of A);
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A))))))} ∈ {p. is-CSP-process p}
apply (simp)
apply (rule seq-CSP)
prefer 3
apply (rule seq-CSP)
apply (auto simp: relation-of-CSP1 relation-of-R)
apply (rule rd-is-CSP)
apply (auto simp: csp-defs rp-defs design-defs fun-eq-iff prefixeq-def increase-def decrease-def
 split: cond-splits)
done

lemmas Var-is-CSP = Var-is-action[simplified]

lemma relation-of-Var:
relation-of (Var v A) =
((R(true ⊢ (λ (A, A'). ∃ a. tr A' = tr A ∧ ¬wait A' ∧ more A' = (increase v a (more A)))));
 (relation-of A);
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A))))))
apply (simp only: Var-def)
apply (rule action-of-inverse)
apply (rule Var-is-action)
done

lemma mono-Var : mono (Var x)
 by (auto simp: mono-def less-eq-action ref-def relation-of-Var)

definition Let::('v, 'σ) var-list ⇒('ϑ, 'σ) action ⇒ ('ϑ::ev-eq,'σ) action whereby
Let v A ≡ action-of((relation-of A);;
 (R(true ⊢ (λ (A, A'). tr A' = tr A ∧ ¬wait A' ∧ more A' = (decrease v (more A)))))
syntax -let::idt ⇒ ('ϑ, 'σ) action ⇒ ('ϑ, 'σ) action (let - • - [1000] 999)
translations let y • Act => CONST Let (VAR-LIST y) Act

lemma Let-is-action:
(relation-of A; ;

81
\[(R(true \vdash (\lambda (A, A'). \ tr A' = tr A \land \neg \text{wait } A' \land more A' = (decrease v \ (more A)))))) \in \{p. \text{is-CSP-process } p\}\]

apply (simp)
apply (rule seq-CSP)
apply (auto simp: relation-of-CSP1 relation-of-R)
apply (rule rd-is-CSP)
apply (auto)
done

lemmas Let-is-CSP = Let-is-action[simplified]

lemma relation-of-Let:

relation-of \ (Let v A) =

(R(true \vdash (\lambda (A, A'). \ tr A' = tr A \land \neg \text{wait } A' \land more A' = (decrease v \ (more A))))))

by (simp add: Let-def action-of-inverse Let-is-CSP)

lemma mono-Let : mono (Let x)

by (auto simp: mono-def less-eq-action ref-def relation-of-Let)

lemma Var-is-state-update-before: Var v A = state-update-before (\lambda (s, s'). \ \exists a. s' = increase v a s) (Let v A)

apply (subst relation-of-inject[symmetric])
apply (auto simp: rp-defs fun-eq-iff Pre-def design-defs)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+ defer
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+ defer
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (case-tac ∃ A’ a. A’ = increase v a (alpha-rp.more aa), simp-all add: true-def)
apply (erule-tac x=a in allE)
apply (erule-tac x=a in allE, simp)
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
apply (rule-tac b=ab in comp-intro)
apply (split cond-splits, simp-all)+
apply (case-tac ∃ A’ a. A’ = increase v a (alpha-rp.more aa), simp-all add: true-def)
apply (erule-tac x=a in allE)
apply (erule-tac x=a in allE, simp)
apply (rule-tac b=bb in comp-intro, simp-all)
apply (split cond-splits, simp-all)+
done

lemma Let-is-state-update-after: Let v A = state-update-after (λ (s, s’). s’ = decrease v s) A
apply (subst relation-of-inject[symmetric])
apply (auto simp: rp-defs fun-eq-iff Pre-def design-defs)
apply (auto split: cond-splits)
done

14.15 Guarded action

definition Guard::σ predicate ⇒ (∀':ev-eq, 'σ) action ⇒ (∀', 'σ) action (- 'κ· -)
where g ·'κ· P ≡ action-of(R (((g o more o fst) "→" (relation-of-P)'f) t)
 (((g o more o fst) ∧ ((relation-of-P)'f)) v
 (¬((g o more o fst)) ∧ (λ (A, A'), tr A' = tr A ∧ wait A'))))))

lemma Guard-is-action:
(R (((g o more o fst) "→" ((relation-of-P)'f)) t
 (((g o more o fst) ∧ ((relation-of-P)'f)) v
 (¬((g o more o fst)) ∧ (λ (A, A'), tr A' = tr A ∧ wait A')))))) ∈ {p.
 is-CSP-process p}
 by (auto simp add: spec-def intro: rd-is-CSP)

lemmas Guard-is-CSP = Guard-is-action[simplified]

lemma relation-of-Guard:
relation-of (g ·'κ· P) = (R (((g o more o fst) "→" (relation-of-P)'f) t
 (((g o more o fst) ∧ ((relation-of-P)'f)) v
 (¬((g o more o fst)) ∧ (λ (A, A'), tr A' = tr A ∧ wait A'))))))
apply \((\neg (g \circ \text{more} \circ o \ fst)) \land (\lambda \ (A, A'). \ \text{tr} \ A' = \text{tr} \ A \land \text{wait} \ A'))\))

apply (unfold Guard-def)
apply (subst action-of-inverse)
apply (simp-all only: Guard-is-action)
done

lemma mono-Guard : mono \((\text{Guard} \ g)\)
apply (auto simp: mono-def less-eq-action ref-def rp-defs design-defs relation-of-Guard
split: cond-splits)
apply (auto dest: relation-of-spec-f-f relation-of-spec-t-f)
done

lemma false-Guard : \(\text{false} \ ' \&' \ P = \text{Stop}\)
apply (subst relation-of-inject[symmetric])
apply (subst relation-of-Stop)
apply (subst relation-of-Guard)
apply (simp add: fun-eq-iff utp-defs csp-defs design-defs rp-defs)
done

lemma false-Guard1 : \(\forall \ a \ b. \ (\alpha-rp \ a) = \text{false} \Rightarrow \ (\text{relation-of} \ (g \ ' \ P)) \ (a, b) = (\text{relation-of} \ \text{Stop}) \ (a, b)\)
apply (subst relation-of-Guard)
apply (subst relation-of-Stop)
apply (auto simp: fun-eq-iff csp-defs design-defs rp-defs split: cond-splits)
done

lemma true-Guard : \(\text{true} \ ' \&' \ P = P\)
apply (subst relation-of-inject[symmetric])
apply (subst relation-of-Guard)
apply (subst CSP-is-rd[OF relation-of-CSP])
back back
apply (simp add: fun-eq-iff utp-defs csp-defs design-defs rp-defs)
done

lemma true-Guard1 : \(\forall \ a \ b. \ (\alpha-rp \ a) = \text{true} \Rightarrow \ (\text{relation-of} \ (g \ ' \ P)) \ (a, b) = (\text{relation-of} \ P) \ (a, b)\)
apply (subst relation-of-Guard)
apply (subst CSP-is-rd[OF relation-of-CSP])
back back
apply (auto simp: fun-eq-iff csp-defs design-defs rp-defs split: cond-splits)
done

lemma Guard-is-state-update-before : \(\text{g} \ ' \&' \ P = \text{state-update-before} \ (\lambda \ (s, s'). \ g \ s) \ P\)
apply (subst relation-of-inject[symmetric])
apply (auto simp: relation-of-Guard relation-of-state-update-before relation-of-Skip
rp-defs fun-eq-iff
Pre-def update-def design-defs)
apply (rule_tac b=a in comp-intro)
apply (split cond-splits, simp-all)+
apply (subst CSP-is-rd)
apply (simp-all add: relation-of-CSP rp-defs design-defs fun-eq-iff)
apply (auto)
apply (subst (asm) CSP-is-rd)
apply (simp-all add: relation-of-CSP rp-defs design-defs fun-eq-iff)
apply (split cond-splits, simp-all)+
apply (auto)
apply (subst (asm) CSP-is-rd)
apply (simp-all add: relation-of-CSP rp-defs design-defs fun-eq-iff)
apply (split cond-splits, simp-all)+
apply (auto) defer
apply (subst CSP-is-rd)
apply (simp-all add: relation-of-CSP rp-defs design-defs fun-eq-iff)
apply (split cond-splits, simp-all)+
apply (auto) defer
apply (rule disjI1) defer
apply (case-tac g (alpha-rp. more aa), simp-all)
apply (rule)+
apply (simp add: impl-def)
definition iPrefix :: ('σ ⇒ 'ϑ :: ev-eq) ⇒ ('σ relation) ⇒ (('σ, 'σ action ⇒ ('σ, 'σ action) ⇒ ('σ ⇒ 'ϑ set ⇒ ('σ, 'σ action ⇒ ('σ, 'σ action) ⇒ ('σ ⇒ 'ϑ set ⇒ ('σ, 'σ action ⇒ ('σ, 'σ action where
iPrefix c i j S P ≡ action-of(R(true ⊢ (λ (A, A'). (do-I c (S (more A))) (A, A') & more A' = more A))); 'P
definition oPrefix :: ('σ ⇒ 'ϑ ⇒ 'σ) ⇒ ('σ :: ev-eq, 'σ action ⇒ (λ (A, A'). (do-I c (S (more A))) (A, A') & more A' = more A))); 'P
prefix \(c \ p \) \(\equiv \) action-of(\(R(\text{true} \vdash (\text{do} \ c) \wedge (\lambda (A, A'). \text{more} \ A' = \text{more} \ A)) \))

definition Prefix\(\theta::0::(\theta::\text{ev}-\text{eq}, \ 's') \) action \(\Rightarrow (\theta, \ 's') \) action where

Prefix\(\theta::0::(\theta::\text{ev}-\text{eq}, \ 's') \) action \(\Rightarrow (\theta, \ 's') \) action where

definition read\(::(v \Rightarrow \ '\theta') \Rightarrow (\ 'v', 's') \) var-list \(\Rightarrow (\ 'v::\text{ev}-\text{eq}, 's') \) action \(\Rightarrow (\ '\theta', 's') \) action where

read\(c \ x \ p \) \(\equiv \) iPrefix (\(\lambda (A. c (\text{select} \ x \ A)) \) \((\lambda (s, s')). \exists \ a. s' = \text{increase} \ x \ a \ s) \) \((\text{Let} \ x) \) \((\lambda s. c'(S \ s)) \) P

definition

write1::(v \Rightarrow \ '\theta') \Rightarrow (\ 'v', 's') \) var-list \(\Rightarrow (\ 'v::\text{ev}-\text{eq}, 's') \) action \(\Rightarrow (\ '\theta', 's') \) action where

write1\(c \ a \ p \) \(\equiv \) oPrefix \((\lambda (A. c (\text{a} \ A)) \) P

definition

write0::(v \Rightarrow \ '\theta') \Rightarrow (\ 'v::\text{ev}-\text{eq}, 's') \) action \(\Rightarrow (\ '\theta', 's') \) action where

write0\(c \ p \) \(\equiv \) Prefix\(\theta c \ p \)

syntax

\[-\text{read} ::= \ldots\]

\[-\text{readS} ::= \ldots\]

\[-\text{readSS} ::= \ldots\]

\[-\text{write} ::= \ldots\]

\[-\text{writeS} ::= \ldots\]

translations

\[-\text{read} :: p \ P \] \(\equiv \) CONST \(\text{read} \ (\text{VAR-LIST} \ p) \)

\[-\text{readS} :: \ldots\]

\[-\text{readSS} :: \ldots\]

\[-\text{write} :: \ldots\]

\[-\text{writeS} :: \ldots\]

lemma Prefix-is-action:

\((R(\text{true} \vdash (\text{do} \ c) \wedge (\lambda (A, A'). \text{more} \ A' = \text{more} \ A))) \in \{ \text{p.is-CSP-process} \ p \} \)

by (auto intro: rd-is-CSP)

lemma Prefix\(\theta::1::(\theta::\text{ev}-\text{eq}, 's') \) action \(\Rightarrow (\theta, 's') \) action

\((R(\text{true} \vdash (\lambda (A, A'). \text{do-I} \ c (S \ (\text{alpha- rp}. \text{more} A)) \ (A, A') \wedge (\text{alpha- rp}. \text{more} A' = \text{alpha- rp}. \text{more} A))) \in \{ \text{p.is-CSP-process} \ p \} \)

by (auto intro: rd-is-CSP)
lemma Prefix0-is-action:
\((R(\text{true} \vdash (\text{do} \ c) \land (\lambda (A, A'). \text{more} A' = \text{more} A))) \in \{p. \text{is-CSP-process} p\} \)
by (auto intro: rd-is-CSP)

lemmas Prefix-is-CSP = Prefix-is-action[simplified]

lemmas Prefix1-is-CSP = Prefix1-is-action[simplified]

lemmas Prefix0-is-CSP = Prefix0-is-action[simplified]

lemma relation-of-iPrefix:
relation-of (iPrefix c i j S P) =
\(((R(\text{true} \vdash (\lambda (A, A'). (\text{do} - c (S \text{(more} A')) \ (A, A') \land \text{more} A' = \text{more} A))) ; \text{relation-of} P) \)
by (simp add: iPrefix-def relation-of-Seq action-of-inverse Prefix1-is-CSP)

lemma relation-of-oPrefix:
relation-of (oPrefix c P) =
\(((R(\text{true} \vdash (\text{do} c) \land (\lambda (A, A'). \text{more} A' = \text{more} A))) ; \text{relation-of} P) \)
by (simp add: oPrefix-def relation-of-Seq action-of-inverse Prefix-is-CSP)

lemma relation-of-Prefix0:
relation-of (Prefix0 c P) =
\(((R(\text{true} \vdash (\lambda (-) c) \land (\lambda (A, A'). \text{more} A' = \text{more} A))) ; \text{relation-of} P) \)
by (simp add: Prefix0-def relation-of-Seq action-of-inverse Prefix0-is-CSP)

lemma mono-iPrefix : mono (iPrefix c i j s)
by (auto simp: mono-def less-eq-action ref-def relation-of-iPrefix)

lemma mono-oPrefix : mono (oPrefix c)
by (auto simp: mono-def less-eq-action ref-def relation-of-oPrefix)

lemma mono-Prefix0 : mono(Prefix0 c)
by (auto simp: mono-def less-eq-action ref-def relation-of-Prefix0)

14.17 Hiding

definition Hide::('\theta::ev-eq, 'σ) action \Rightarrow \text{"\theta set \Rightarrow (\text{"\theta, \text{"σ} action (infixl \setminus 18) where}
P \setminus cs \equiv \text{action-of}(R(\lambda(S, S'), \exists s. (\text{diff-tr} S' S) = (\text{tr-filter} (s - (\text{tr} S)) cs) \& (\text{relation-of} P))(S, S'[tr := s, ref := (\text{ref} S') \cup cs []])); (\text{relation-of} Skip))

definition hid P cs == (R(\lambda(S, S'), \exists s. (\text{diff-tr} S' S) = (\text{tr-filter} (s - (\text{tr} S)) cs) \& (\text{relation-of} P))(S, S'[tr := s, ref := (\text{ref} S') \cup cs []])); (\text{relation-of} Skip)
lemma hid-is-R: hid P cs is R healthy
apply (simp add: hid-def)
apply (rule seq-R)
apply (simp add: Healthy-def R-idem2)
apply (rule CSP-is-R)
apply (rule relation-of-CSP)
done

lemma hid-Skip: hid P cs = (hid P cs ; ; relation-of Skip)
by (simp add: hid-def comp-assoc[symmetric] Skip-comp-absorb)

lemma hid-is-CSP1: hid P cs is CSP1 healthy
apply (auto simp add: CSP1-def hid-def rp-defs fun-eq-iff)
apply (rule-tac b=a in comp-intro)
apply (clarsimp split: cond-splits)
apply (subst CSP-is-rd, auto simp: rp-defs relation-of-CSP design-defs fun-eq-iff split: cond-splits)
apply (rule-tac x=[] in exI, auto)
done

lemma hid-is-CSP2: hid P cs is CSP2 healthy
apply (simp add: hid-def)
apply (rule seq-CSP2)
apply (rule CSP-is-CSP2)
apply (rule relation-of-CSP)
done

lemma hid-is-CSP: is-CSP-process (hid P cs)
by (auto simp: csp-defs hid-is-CSP1 hid-is-R hid-is-CSP2)

lemma Hide-is-action:
(R(\lambda(S, S'), \exists s. (diff-tr S' S) = (tr-filter (s - (tr S)) cs) &
(relation-of P))(S, S' | tr := s, ref := (ref S') \cup cs |)); (relation-of Skip)) \in {p. is-CSP-process p}
by (simp add: hid-is-CSP[simplified hid-def])

lemmas Hide-is-CSP = Hide-is-action[simplified]

lemma relation-of-Hide:
relation-of (P \ cs) = (R(\lambda(S, S'). \exists s. (diff-tr S' S) = (tr-filter (s - (tr S)) cs) &
(relation-of P))(S, S' | tr := s, ref := (ref S') \cup cs |)); (relation-of Skip))
by (simp add: Hide-def action-of-inverse Hide-is-CSP)

lemma mono-Hide : mono(\lambda P. P \ cs)
by (auto simp: mono-def less-eq-action ref-def prefixeq-def atp-defs relation-of-Hide rp-defs)
14.18 Recursion

To represent the recursion operator "μ" over actions, we use the universal least fix-point operator "lfp" defined in the HOL library for lattices. The operator "lfp" is inherited from the "Complete Lattice class" under some conditions. All theorems defined over this operator can be reused.

In the Circus-Actions theory, we presented the proof that Circus actions form a complete lattice. The Knaster-Tarski Theorem (in its simplest formulation) states that any monotone function on a complete lattice has a least fixed-point. This is a consequence of the basic boundary properties of the complete lattice operations. Instantiating the complete lattice class allows one to inherit these properties with the definition of the least fixed-point for monotonic functions over Circus actions.

```plaintext
syntax -MU::[idt, idt ⇒ ('θ, 'σ) action] ⇒ ('θ, 'σ) action (μ - • -)
translations -MU X P == CONST lfp (λ X. P)
```

15 Circus syntax

theory Circus-Syntax
imports Denotational-Semantics
keywords alphabet state channel nameset chanset schema action and circus-process :: thy-decl
begin

abbreviation list-select::['r ⇒ 'a list] ⇒ ('r ⇒ 'a) where
list-select Sel ≡ hd o Sel

abbreviation list-update::([('a list ⇒ 'a list) ⇒ 'r ⇒ 'r] ⇒ ('a ⇒ 'a) ⇒ 'r ⇒ 'r) where
list-update Upd ≡ λ e. Upd (λ l. (e (hd l))#(tl l))

abbreviation list-update-const::([('a list ⇒ 'a list) ⇒ 'r ⇒ 'r] ⇒ ('a ⇒ 'a list) ⇒ 'r ⇒ 'r) where
list-update-const Upd ≡ λ e. λ (A, A'). A' = Upd (λ l. e#(tl l)) A

abbreviation update-const::([('a ⇒ 'a) ⇒ 'r ⇒ 'r] ⇒ ('a ⇒ 'a) ⇒ 'r ⇒ 'r) where
update-const Upd ≡ λ e. λ (A, A'). A' = Upd (λ - e) A

syntax -synt-assign :: id ⇒ 'a ⇒ 'b relation (· := -)

ML ⟨⟨
structure VARs-Data = Proof-Data
```
(type T = {State-vars: string list, Alpha-vars: string list}
fun init : T = {State-vars = [], Alpha-vars = []})

nonterminal circus-action and circus-schema

syntax
  -circus-action :: 'a => circus-action (-)
  -circus-schema :: 'a => circus-schema (-)

parse-translation ⟨⟨
let
  val (State-vars=sv, Alpha-vars=av) = VARs-Data.get ctxt

  fun get-selector x =
    let val c = Consts.intern (Proof-Contextconsts-of ctxt) x
    in
      if member (op =) av x then SOME (Const (Circus-Syntax.list-select, dummyT) $(Syntax.const c))
      else
        if member (op =) sv x then SOME (Syntax.const c)
        else NONE
    end;

  fun get-update x =
    let val c = Consts.intern (Proof-Contextconsts-of ctxt) x
    in
      if member (op =) av x then SOME (Const (Circus-Syntax.list-update-const, dummyT) $(Syntax.const (c Record.updateN)))
      else
        if member (op =) sv x then SOME (Const (Circus-Syntax.update-const, dummyT) $(Syntax.const (c Record.updateN)))
        else NONE
    end;

  fun print text = (fn x => let val _ = writeln text; in x end);

  val rel-op-type = @\{typ ('a × 'b ⇒ bool) ⇒ ('b × 'c ⇒ bool) ⇒ 'a × 'c ⇒ bool\};

  fun tr i (t as Free (x, -)) =
    (case get-selector x of
      SOME c => c $ Bound (i + 1)
    | NONE =>
      (case try (unsuffix ') x of
        SOME y =>
          (case get-selector y of SOME c => c $ Bound i | NONE => t)
        | NONE => t))
    | tr i (t as (Const (-synt-assign, -) $(Free (x, -) $ r))) =
      (case get-update x of
SOME c => c $(\text{Bound } (i + 1) \ $ \text{Bound } i)$
| NONE => t)
(*
| tr i (t as (Const (c, rel-op-type) $ l $ r)) = print c
| $ ((\text{Syntax.const \@\{const-name prod-case\} $ Abs (B, dummyT, Abs (B', dummyT, Const (c, rel-op-type)))) $ tr i
| l $ tr i r)
| $(\text{Const (Product-Type.Pair, dummyT) $ Bound (i + 1) $ Bound i})*$
| tr i (t $ u) = tr i t $ tr i u
| tr i (Abs (x, T, t)) = Abs (x, T, tr (i + 1) t)
| tr - a = a;
| in tr 0 end;

fun quote-tr ctxt [t] = Syntax.const \@\{const-name uncurry\} $ Abs (A, dummyT, Abs (A', dummyT, antiquote-tr ctxt (Term.incr-boundvars 2 t)));
| quote-tr - ts = raise TERM (quote-tr, ts);
in [\{\syntax-const -circus-schema\}, quote-tr] end
⟩⟩

ML ⟨⟨
fun get-fields (SOME (\{fields, parent, \ldots\}: Record.info)) thy =
| (case parent of
| SOME (-,y) => fields @ get-fields (Record.get-info thy y) thy
| NONE => fields)
| get-fields NONE = []
val dummy = Term.dummy-pattern dummyT;
fun mk-eq (l, r) = HOLogic.Trueprop $(\text{HOLogic.eq-const dummyT) $ l $ r}"

fun add-datatype (params, binding) constr-specs thy =
let
val ([dt-name], thy') = thy
| BNF-LFP-Compat.add-datatype [BNF-LFP-Compat.Keep-Nesting]
| ((binding, params, NoSyn), constr-specs)];
val constr-names =
map fst (the-single (map (#3 o snd)
| (#descr (BNF-LFP-Compat.the-info thy' [BNF-LFP-Compat.Keep-Nesting]
dt-name))));
| fan constr (c, Ts) = (Const (c, dummyT), length Ts);
| val constrs = map \#1 constr-specs \~\~ map constr (constr-names \~\~ map \#2 constr-specs);
in ((dt-name, constrs), thy') end;

fun define-channels (params, binding) typesyn channels thy =
case typesyn of
NONE =>
let
  val dt-binding = Binding.suffix-name -channels binding;

  val constr-specs = map (fn (b, opt-T) => (b, the-list opt-T, NoSyn)) channels;
  val ((dt-name, constrs), thy1) =
    add-datatype (params, dt-binding) constr-specs thy;

  val T = Type (dt-name, []);

  val fun-name = ev-eq ^ - ^ Long-Name.base-name dt-name;

  val ev-equ = Free (fun-name, T --> T --> HOLogic.boolT);

  val eqs = map-product (fn (-, (c, n)) => (fn (-, (c1,n1)) =>
    let
      val t = Term.list-comb (c, replicate n dummy);
      val t1 = Term.list-comb (c1, replicate n1 dummy);
    in
      (if c = c1 then mk-eq (ev-equ $ t $ t1), @{term True})
      else mk-eq (ev-equ $ t $ t1), @{term False}) end) constrs constrs;

fun case-tac x ctxt =
  resolve-tac ctxt [Thm.instantiate' [] [SOME x]
    (#exhaust (BNF-LFP-Compat.the-info (Proof-Context.theory-of ctxt) [BNF-LFP-Compat.Keep-Nesting]
      dt-name))];

fun proof ctxt = (Class.intro-classes-tac ctxt [] THEN
  Subgoal.FOCUS (fn {context = ctxt', params = [(-, x), ...]} =>
    (case-tac x ctxt') 1
    THEN auto-tac ctxt') ctxt 1 THEN
  Subgoal.FOCUS (fn {context = ctxt', params = [(-, x), (-, y)]},
    ...) =>
    ((case-tac x ctxt') THEN-ALL-NEW (case-tac y ctxt')) 1
    THEN auto-tac ctxt') ctxt 1);

val thy2 =
  thy1
  |> Class.instantiation ([dt-name], params, @{sort ev-eq})
  |> Function-Fun.add-fun (((Binding.name fun-name, NONE, NoSyn])
    (map (pair Attrib.empty-binding) eqs) Function-Fun.fun-config
    |> Local-Theory.restore
    |> Class.prove-instantiation-exit (fn ctxt =>> proof ctxt);
in
((dt-name, constrs), thy2)
end
| (SOME typn) =>>
let
val dt-binding = Binding.suffix-name -channels binding;

val (dt-name, thy1) =  
 thy |> Named-Target.theory-init  
 |> (fn ctxt => Typedecl.abbrev (dt-binding, map fst params, NoSyn))  
 (Proof-Context.read-typ ctxt typn) ctxt;

val thy2 = thy1 |> Local-Theory.exit-global;  
in ((dt-name, []), thy2)  
end;

fun define-chanset binding channel-constrs (name, chans) thy =  
let  
  val constrs =  
    filter (fn (b, -) => exists (fn a => a = Binding.name-of b) chans)  
    channel-constrs;
  val bad-chans =  
    filter-out (fn a => exists (fn (b, -) => a = Binding.name-of b) channel-constrs)  
    chans;
  val * = null bad-chans orelse  
    error (Bad elements " commas-quote bad-chans " in chanset: " quote  
      (Binding.print name));
  val base-name = Binding.name-of name;
  val cs = map (fn (-, (c, n)) => Term.list-comb (c, replicate n (Const (@{const-name undefined}, dummyT)))) constrs;
  val chanset-eq = mk-eq ((Free (base-name, dummyT)), (HOLogic.mk-set dummyT cs));
  in
  thy  
    |> Named-Target.theory-init  
    |> Specification.definition  
      (SOME (Binding.qualifed true base-name binding, NONE, NoSyn),  
       (Attrib.empty-binding, chanset-eq))  
    |> snd |> Local-Theory.exit-global
  end;

fun define-nameset binding (rec-binding, alphabet) (ns-binding, names) thy =  
let  
  val all-selectors = get-fields (Record.get-info thy (Sign.full-name thy rec-binding))  
  thy
  val bad-names =  
    filter-out (fn a => exists (fn (b, -) => String.isSuffix a b) all-selectors)  
    names;
  val * = null bad-names orelse  
    error (Bad elements " commas-quote bad-names " in nameset: " quote  
      (Binding.print ns-binding));
  val selectors =
filter (fn (b, -) => exists (fn a => String.isSuffix a b) names) all-selectors;
val updates = map (fn x => (fst x, ((suffix Record.updateN o fst) x)) selectors;
val selectors' = map (fn x => (fst x, Const(fst x, dummyT))) selectors;
val updates' = map (fn (x, y) => (x, Const(y, dummyT))) updates;
val l =
  map (fn (b, -) => Binding.name-of b) alphabet;
val formulas = map2 (fn (nx, x) =>
  fn (ny, y) =>
    if (exists (fn b => String.isSuffix b nx) l)
      then Abs (A, dummyT, (Const(Circus-Syntax.list-update, dummyT) $ x)
        $ (Abs (-, dummyT, (Const(Circus-Syntax.list-select, dummyT) $ y) $ (Bound 1)))))
  else Abs (A, dummyT, x $ (Abs (-, dummyT, y $ (Bound 1)))))
updates' selectors';
val base-name = Binding.name-of ns-binding;
fun comp [a] = a $ (Bound 1) $ (Bound 0)
  | comp (a::l) = a $ (Bound 1) $ (comp l);
val nameset-eq = mk-eq ((Free (base-name, dummyT)), (Abs (-, dummyT, (Abs (-, dummyT, comp formulas)))));
in
thy |
> Named-Target.theory-init
> Specification.definition
  (SOME (Binding.qualified true base-name binding, NONE, NoSyn),
   (Attrib.empty-binding, nameset-eq))
| > snd | > Local-Theory.extt-global
end;

fun define-schema binding (ex-binding, expr) (alph-bind, alpha, state) thy =
let
  val fields-names = (map (fn (nx, x, T) => (Binding.name-of x, T)) (alpha @
    state));
  val alpha' = (map (fn (x, T) => (Binding.name-of x, T)) alpha);
  val state' = (map (fn (x, T) => (Binding.name-of x, T)) state);
  val all-selectors = get-fields (Record.get-info thy (Sign.full-name thy alph-bind))
thy
  val base-name = Binding.name-of ex-binding;
  val ctxt = Proof-Context.init-global thy;
  val term =
    Syntax.read-term
      (ctxt
        |> VARs-Data.put ({State-vars=(map fst state'),
          Alpha-vars=(map fst alpha')})
        |> Config.put Syntax.root @{nonterminal circus-schema)} expr;
  val sc-eq = mk-eq ((Free (base-name, dummyT)), term);
in
thy
fun define-action binding (ex-binding, expr) alph-bind chan-bind thy = 
  let
  val base-name = Binding.name-of ex-binding;
  val ctxt = Proof-Context.init-global thy;
  val actT = Circus-Actions.action;
  val action-eq = mk-eq
    (Free (base-name, Type (actT, [(Proof-Context.read-type-name {proper=true, strict=false} ctxt (Sign.full-name thy chan-bind)), (Proof-Context.read-type-name {proper=true, strict=false} ctxt (Sign.full-name thy alph-bind()]))]),
     (Syntax.parse-term ctxt expr));
  in
  thy
  |> Named-Target.theory-init
  |> Specification.definition
  (SOME (Binding.qualified true base-name binding, NONE, NoSyn), (Attrib.empty-binding, sc-eq))
  |> snd
  |> Local-Theory.exit-global
  end;

fun define-expr binding (alph-bind, alpha, state) chan-bind (ex-binding, (is-schema, expr)) = 
  if is-schema then define-schema binding (ex-binding, expr) (alph-bind, alpha, state)
  else define-action binding (ex-binding, expr) alph-bind chan-bind;

fun prep-field prep-typ (b: binding, raw-T) ctxt = 
  let
    val T = prep-typ ctxt raw-T;
    val ctxt' = Variable.declare-typ T ctxt;
    in ((b, T), ctxt') end;

fun prep-constr prep-typ (b: binding, raw-T) ctxt = 

let
  val T = Option.map (prep-typ ctxt) raw-T;
  val ctxt' = fold Variable.declare-typ (the-list T) ctxt;
in ((b, T), ctxt') end;

fun gen-circus-process prep-constraint prep-typ
  (raw-params, binding) raw-alphabet raw-state (typesyn, raw-channels) namesets chansets
  exprs act thy =
  let
    val ctxt = Proof-Context.init-global thy;
    (* internalize arguments *)
    val params = map (prep-constraint ctxt) raw-params;
    val ctxt0 = fold (Variable.declare-typ o TFree) params ctxt;
    val (alphabet, ctxt1) = fold-map (prep-field prep-typ) raw-alphabet ctxt0;
    val (state, ctxt2) = fold-map (prep-field prep-typ) raw-state ctxt1;
    val (channels, ctxt3) = fold-map (prep-constr prep-typ) raw-channels ctxt2;
    val params' = map (Proof-Context.check-tfree ctxt3) params;
    (* type definitions *)
    val fields = map (fn (b, T) => (b, T, NoSyn)) (map (apsnd HOLogic.listT) alphabet @
      state);
    val thy1 = thy |>
      not (null fields) ?
      Record.add-record (params', Binding.suffix-name -alphabet binding) NONE fields;
    val (channel-constras, thy2) = if not (null channels) orelse is-some typesyn
      then apfst snd (define-channels (params', binding) typesyn channels thy1)
      else ([], thy1);
    val thy3 = thy2 |>
      not (null chansets) ? fold (define-chanset binding channel-constras) chansets
      |> not (null namesets) ?
      fold (define-nameset binding ((Binding.suffix-name -alphabet binding), alphabet)) namesets
      |> not (null exprs) ?
      fold (define-expr binding ((Binding.suffix-name -alphabet binding), alphabet, state))
      (Binding.suffix-name -channels binding)) exprs
| > define-action binding (binding, act)
  (Binding.suffix-name -alphabet binding) (Binding.suffix-name -channels binding);
  in
  thy3
end;

fun circus-process x = gen-circus-process (K I) Syntax.check-typ x;
fun circus-process-cmd x = gen-circus-process (apsnd o Typedecl.read-constraint) Syntax.read-typ x;

local
val fields =
  @{keyword []} |-- Parse.enum1 , (Parse.binding -- (@{keyword ::} |-- Parse.!!! Parse.typ))
  |-- | @{keyword []};
val constrs =
  (@{keyword []} |-- Parse.enum1 , (Parse.binding -- Scan.option Parse.typ)
  |-- | @{keyword []}) >> pair NONE
  || Parse.typ >> (fn b => (SOME b, []));
val names =
  @{keyword []} |-- Parse.enum1 , Parse.name --| @{keyword []};
in
val - =
  Outer-Syntax.command @{command-keyword circus-process} Circus process specification
  ((Parse.type-args-constrained -- Parse.binding -- | @{keyword =}) --
    Scan.optional (@{keyword alphabet} |-- Parse.!!! (@{keyword =} |-- fields))
  ||
  Scan.optional (@{keyword state} |-- Parse.!!! (@{keyword =} |-- fields))
  ||
  Scan.optional (@{keyword channel} |-- Parse.!!! (@{keyword =} |-- constrs) (NONE, [])) --
    Scan.repeat (@{keyword nameset} |-- Parse.!!! ((Parse.binding -- | @{keyword =})
    || names)) --
    Scan.repeat (@{keyword chanset} |-- Parse.!!! ((Parse.binding -- | @{keyword =})
    || names)) --
    Scan.repeat (@{keyword schema} |-- Parse.!!! ((Parse.binding -- | @{keyword =})
    || (Parse.term >> pair true)) ||
    ((@{keyword action} |-- Parse.!!! ((Parse.binding -- | @{keyword =})
    || (Parse.where- |-- Parse.!!! Parse.term)
    >> (fn ((((((a, b), c), d), e), f), g), h) =>
      Toplevel.theory (circus-process-cmd a b c d e f g h))));
16 Refinement and Simulation

theory Refinement
import Denotational-Semantics Circus-Syntax
begin

16.1 Definitions

In the following, data (state) simulation and functional backwards simulation are defined. The simulation is defined as a function $S$, that corresponds to a state abstraction function.

definition Simul $S$ $b$ = extend (make (ok $b$) (wait $b$) ($tr$ $b$) (ref $b$)) ($S$ (more $b$))

definition Simulation ::= (′$\theta$::ev-eq,′$\sigma$) action ⇒ (′$\sigma$1 ⇒ ′$\sigma$) ⇒ (′$\theta$,′$\sigma$1) action ⇒ bool (≤-

where $A$ ≤$S$ $B$ ≡ ∀ $a$, $b$. (relation-of $B$ ($a$, $b$) ⇒ (relation-of $A$) ($Simul S a$, $Simul S b$)

16.2 Proofs

In order to simplify refinement proofs, some general refinement laws are defined to deal with the refinement of Circus actions at operators level and not at UTP level. Using these laws, and exploiting the advantages of a shallow embedding, the automated proof of refinement becomes surprisingly simple.

lemma Stop-Sim: Stop ≤$S$ Stop
by (auto simp: Simulation-def relation-of-Stop rp-defs design-defs Simul-def alpha-rp.defs

split: cond-splits)

lemma Skip-Sim: Skip ≤$S$ Skip
by (auto simp: Simulation-def relation-of-Skip design-defs rp-defs Simul-def alpha-rp.defs

split: cond-splits)

lemma Chaos-Sim: Chaos ≤$S$ Chaos
by (auto simp: Simulation-def relation-of-Chaos rp-defs design-defs Simul-def alpha-rp.defs

split: cond-splits)
lemma Ndet-Sim:
assumes A: P \preceq S Q and B: P' \preceq S Q'
shows (P \sqcap P') \preceq S (Q \sqcap Q')
by (insert A B, auto simp: Simulation-def relation-of-Ndet)

lemma Det-Sim:
assumes A: P \preceq S Q and B: P' \preceq S Q'
shows (P \sqcup P') \preceq S (Q \sqcup Q')
by (auto simp: Simulation-def relation-of-Det design-def rp-defs Simul-def alpha-rp-defs)

spec-def

lemma Schema-Sim:
assumes A: \forall a. (Pre sc1) (S a) \implies (Pre sc2) a
and B: \forall a b. [Pre sc1 (S a) ; sc2 (a, b)] \implies sc1 (S a, S b)
shows (Schema sc1) \preceq S (Schema sc2)
by (auto simp: Simulation-def Simul-def relation-of-Schema rp-defs design-defs alpha-rp-defs)

SUb-Sim:
assumes A: \forall a. (Pre sc1) (S a) \implies (Pre sc2) a
and B: \forall a b. [Pre sc1 (S a) ; sc2 (a, b)] \implies sc1 (S a, S b)
and C: P \preceq S Q
shows (state-update-before sc1 P) \preceq S (state-update-before sc2 Q)
apply (auto simp: Simulation-def Simul-def relation-of-state-update-before rp-defs design-defs alpha-rp-defs)

apply (erule notE)
back
apply (drule C\[simplified Simulation-def Simul-def, rule-format\])
apply (rule-tac b=Simul S ba in comp-intro)
apply (auto simp: A B Simul-def alpha-rp-defs)
apply (clarsimp split: cond-splits)+
apply (drule C\[simplified Simulation-def Simul-def, rule-format\])
apply (rule-tac b=Simul S ba in comp-intro)
apply (auto simp: A B Simul-def alpha-rp-defs)
apply (clarsimp split: cond-splits)+
apply (case-tac ok aa, simp-all)
apply (erule notE) back
apply (drule C\[simplified Simulation-def Simul-def, rule-format\])
apply (rule-tac b=Simul S ba in comp-intro)
apply (auto simp: A B Simul-def alpha-rp-defs)
apply (clarsimp split: cond-splits)+
apply (rule A)
apply (case-tac Pre sc1 (S (alpha-rp.more aa)), simp-all)
apply (erule notE) back
apply (drule C\[simplified Simulation-def Simul-def, rule-format\])
apply (rule-tac b=Simul S ba in comp-intro)
apply (auto simp: A B Simul-def alpha-rp.defs)
apply (clarsimp split: cond-splits)+
apply (drule C[simplified Simulation-def, rule-format])
apply (rule-tac b=Simul S ba in comp-intro)
apply (auto simp: A B Simul-def alpha-rp.defs)
apply (clarsimp split: cond-splits)+
apply (rule B, auto)
done

lemma Seq-Sim:
  assumes A: P ⪯ S Q and B: P' ⪯ S Q'
  shows (P '; P') ⪯ S (Q '; Q')
by (auto simp: Simulation-def relation-of-Seq dest:A[simplified Simulation-def, rule-format]
B[simplified Simulation-def, rule-format])

lemma Par-Sim:
  assumes A: P ⪯ S Q and B: P' ⪯ S Q'
  and C: \( \forall a b. S (ns'2 a b) = ns2 (S a) (S b) \)
  and D: \( \forall a b. S (ns'1 a b) = ns1 (S a) (S b) \)
  shows (P \[ ns1 \mid cs \mid ns2 \] P') ⪯ S (Q \[ ns'1 \mid cs \mid ns'2 \] Q')
by (auto simp: Simulation-def relation-of-Par fun-eq-iff rp-defs Simul-def
design-defs spec-def
alpha-rp.defs
  dest: A[simplified Simulation-def Simul-def, rule-format]
B[simplified Simulation-def Simul-def, rule-format])
apply (clarsimp split: cond-splits)+
apply (simp, erule disjE, rule disjI1, simp, rule disjI2, simp-all, rule impI)
apply (auto)
apply (erule-tac x=tr ba in allE, auto)
apply (erule notE) back
apply (rule-tac b=Simul S ba\{ok := False\} in comp-intro)
apply (auto simp: Simul-def alpha-rp.defs dest: A[simplified Simulation-def Simul-def, rule-format])
apply (erule-tac x=tr bb in allE, auto)
apply (erule notE) back
apply (rule-tac b=Simul S bb\{ok := False\} in comp-intro)
apply (auto simp: Simul-def alpha-rp.defs dest: B[simplified Simulation-def Simul-def, rule-format])
apply (erule-tac x=tr ba in allE, auto)
apply (erule notE) back
apply (rule-tac b=Simul S ba\{ok := False\} in comp-intro)
apply (auto simp: Simul-def alpha-rp.defs dest: A[simplified Simulation-def Simul-def, rule-format])
apply (erule-tac x=tr bb in allE, auto)
apply (erule notE) back
apply (rule-tac b=Simul S bb\{ok := False\} in comp-intro)
apply (auto simp: Simul-def alpha-rp.defs dest: B[simplified Simulation-def Simul-def, rule-format])
apply (rule-tac $x=\text{Simul } S \ s1$ in $\text{exI}$)
apply (rule-tac $x=\text{Simul } S \ s2$ in $\text{exI}$)
apply (auto simp: Simul-def alpha-rp.defs
  dest!: $B$[simplified Simulation-def Simul-def, rule-format]
  $A$[simplified Simulation-def Simul-def, rule-format]
  split: cond-splits)
apply (rule-tac $b=\text{Simul } S \ ba$ in $\text{comp-intro}$)
apply (auto simp add: M-par-def alpha-rp defe$s$ diff-tr-def ParMerge-def
  split : cond-splits)
apply (rule-tac $b=(| ok = ok \ bb, wait = wait \ bb, tr = tr \ bb, ref = ref \ bb,$
  $\ldots = S (\alpha-rp.\ more \ bb)|)$ in $\text{comp-intro}$, auto)
apply (subst $D$[where $a=(\alpha-rp.\ more \ s1)$ and $b=(\alpha-rp.\ more \ aa)$, symmetric], simp)
apply (subst $C$[where $a=(\alpha-rp.\ more \ s2)$ and $b=(\alpha-rp.\ more \ bb)$, symmetric], simp)
apply (rule-tac $b=(| ok = ok \ bb, wait = wait \ bb, tr = tr \ bb, ref = ref \ bb,$
  $\ldots = S (\alpha-rp.\ more \ bb)|)$ in $\text{comp-intro}$, auto)
apply (subst $D$[where $a=(\alpha-rp.\ more \ s1)$ and $b=(\alpha-rp.\ more \ aa)$, symmetric], simp)
apply (subst $C$[where $a=(\alpha-rp.\ more \ s2)$ and $b=(\alpha-rp.\ more \ bb)$, symmetric], simp)
done

lemma Assign-Sim:
  assumes $A: \bigwedge A. \ vy \ A = vx \ (S \ A)$
  and $B: \bigwedge ff A. \ (S (\text{y-update } ff \ A)) = x\text{-update } ff \ (S \ A)$
  shows $(x ' := ' vx) \preceq (y ' := ' vy)$
by (auto simp: Simulation-def relation-of-Assign update-def rp-defs design-defs
  Simul-def $A \ B$
  alpha-rp.defs split: cond-splits)

lemma Var-Sim:
  assumes $A: P \preceq S \ Q$ and $B: \bigwedge ff A. \ (S ((\text{snd } b) \ ff \ A)) = (\text{snd } a) \ ff \ (S \ A)$
  shows $(\text{Var } a \ P) \preceq S \ (\text{Var } b \ Q)$
apply (auto simp: Simulation-def relation-of-Var rp-defs design-defs fun-eq-iff
  Simul-def $B$
  alpha-rp.defs increase-def decrease-def)
apply (rule-tac $b=\text{Simul } S \ ab$ in $\text{comp-intro}$)
apply (split cond-splits)+
apply (auto simp: B alpha-rp.defs Simul-def elim!: alpha-rp-eqE)
apply (rule-tac $b=\text{Simul } S \ bb$ in $\text{comp-intro}$)
apply (split cond-splits)+
apply (auto simp: B alpha-rp.defs Simul-def elim!: alpha-rp-eqE dest!: $A$[simplified Simulation-def Simul-def, rule-format]
  split cond-splits)+
apply (simp add: alpha-rp defe$s$)

101
lemma Guard-Sim:
assumes A: P ⪯ S Q and B: \( \forall A. h A = g (S A) \)
shows (g ' & ' P) ⪯ S (h ' & ' Q)
apply (auto simp: Simulation-def)
done

lemma Write0-Sim:
assumes A: P ⪯ S Q
shows a \rightarrow P ⪯ S a \rightarrow Q
using A
apply (auto simp: Simulation-def write0-def relation-of-Prefix0 design-defs rp-defs)
apply (erule-tac x = ba in allE)
apply (erule-tac x = ca in allE, auto)
apply (rule-tac b = Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-def)
done

lemma Read-Sim:
assumes A: P ⪯ S Q and B: \( \forall A. (d A) = c (S A) \)
shows a'?c' \rightarrow P ⪯ S a'?d' \rightarrow Q
using A
apply (auto simp: Simulation-def read-def relation-of-iPrefix design-defs rp-defs)
apply (erule-tac x = ba in allE, erule-tac x = ca in allE, simp)
apply (rule-tac b = Simul S ba in comp-intro)
apply (auto split: cond-splits simp: Simul-def alpha-rp.defs do-def select-def B)
done

lemma Read1-Sim:
assumes A: P ⪯ S Q and B: \( \forall A. (d A) = c (S A) \)
shows a'?c':s \rightarrow P ⪯ S a'?d':s \rightarrow Q
using A
apply (auto simp: Simulation-def read1-def relation-of-iPrefix design-defs rp-defs)
apply \texttt{(erule-tac \texttt{x=ba in \texttt{allE, erule-tac \texttt{x=ca in \texttt{allE, simp})}})}
apply \texttt{(rule-tac \texttt{b=Simul \texttt{S ba in \texttt{comp-intro})}}
apply \texttt{(auto split: \texttt{cond-splits simp: \texttt{Simul-def alpha-rp.defs do-I-def select-def B})}}
done

\textbf{lemma \texttt{Read1S-Sim:}}
\begin{itemize}
\item \texttt{assumes A: \texttt{P \preceq S Q and B: \texttt{\land A. (d A) = c (S A) and C: \texttt{\land A. (s' A) = s (S A)}}}}
\item \texttt{shows \texttt{a'?c'\in's \preceq S a'?'d'\in's' \preceq Q \text{ using A}}}
\item \texttt{apply (auto simp: Simulation-def read1-def relation-of-iPrefix design-defs rp-defs)}}
\item \texttt{apply (erule-tac \texttt{x=ba in allE, erule-tac \texttt{x=ca in allE, simp})}}
\item \texttt{apply (rule-tac \texttt{b=Simul \texttt{S ba in \texttt{comp-intro})}}
\end{itemize}
done

\textbf{lemma \texttt{Write-Sim:}}
\begin{itemize}
\item \texttt{assumes A: \texttt{P \preceq S Q and B: \texttt{\land A. (d A) = c (S A) and C: \texttt{\land A. (s' A) = s (S A)}}}}
\item \texttt{shows \texttt{a'!c \rightarrow P \preceq S a'!'d \rightarrow Q \text{ using A}}}
\item \texttt{apply (auto simp: Simulation-def write1-def relation-of-oPrefix design-defs rp-defs)}}
\item \texttt{apply (erule-tac \texttt{x=ba in allE, erule-tac \texttt{x=ca in allE, simp})}}
\item \texttt{apply (rule-tac \texttt{b=Simul \texttt{S ba in \texttt{comp-intro})}}
\end{itemize}
done

\textbf{lemma \texttt{Hide-Sim:}}
\begin{itemize}
\item \texttt{assumes A: \texttt{P \preceq S Q}}
\item \texttt{shows \texttt{(P \setminus \texttt{cs}) \preceq S (Q \setminus \texttt{cs})}}
\item \texttt{apply (auto simp: Simulation-def relation-of-Hide design-defs rp-defs Simul-def alpha-rp.defs)}}
\item \texttt{apply (rule-tac \texttt{b=Simul \texttt{S ba in \texttt{comp-intro})}}
\item \texttt{apply (split \texttt{cond-splits})+}
\item \texttt{apply (auto simp: Simul-def alpha-rp.defs Simulation-def dest!: A[simplified, rule-format] Skip-Sim[simplified, rule-format])}}
\item \texttt{apply (rule-tac \texttt{x=s in exI, auto simp: diff-tr-def)}}
\end{itemize}
done

\textbf{lemma \texttt{lfp-Siml:}}
\begin{itemize}
\item \texttt{assumes A: \texttt{\land X. (X \preceq S Q) \implies ((P X) \preceq S Q) and B: mono P}}
\item \texttt{shows \texttt{(lfp \texttt{P}) \preceq S Q}}
\item \texttt{apply (rule lfp-ordinal-induct, auto simp: B A)}}
\item \texttt{apply (auto simp add: Simulation-def Sup-action relation-of-bot relation-of-Sup[simplified])}}
\item \texttt{apply (subst (asm) CSP-is-rd[OF relation-of-CSP])}}
\item \texttt{apply (auto simp: rp-defs fun-eq-iff Simul-def alpha-rp.defs decrease-def split: cond-splits)}}
\end{itemize}
done

103
lemma Mu-Sim:
  assumes A: \( \land X \supseteq Y \supseteq S X \supseteq (P X) \supseteq S (Q Y) \)
  and B: mono P and C: mono Q
  shows \( \text{lfp} P \supseteq S \text{lfp} Q \)
  apply (rule lfp-Sim, drule A)
  apply (subst lfp-unfold, simp-all add: B C)
done

lemma bot-Sim: \( \bot \supseteq S \bot \)
by (auto simp: Simulation-def rp-defs Simul-def relation-of-bot alpha-rp.defs split: cond-splits)

lemma sim-is-ref: \( P \subseteq Q = P \uplus (id) Q \)
apply (auto simp: ref-def Simulation-def Simul-def alpha-rp.defs)
apply (erule-tac x=a in allE)
apply (erule-tac x=b in allE, auto)
apply (erule-tac t={(ok = ok a, wait = wait a, tr = tr a, ref = ref a, \ldots = alpha-rp.more a)} and s=a in subst, simp)
apply (erule-tac t={(ok = ok b, wait = wait b, tr = tr b, ref = ref b, \ldots = alpha-rp.more b)} and s=b in subst, simp-all)
apply (erule-tac x=a in allE)
apply (erule-tac x=b in allE, auto)
apply (erule-tac s={(ok = ok a, wait = wait a, tr = tr a, ref = ref a, \ldots = alpha-rp.more a)} and t=a in subst, simp)
apply (erule-tac s={(ok = ok b, wait = wait b, tr = tr b, ref = ref b, \ldots = alpha-rp.more b)} and t=b in subst, simp-all)
apply (auto simp add: ref-def fun-eq-iff relation-of-inject[symmetric])
done

lemma ref-eq: \( \{(P::\{a::ev-eq,b\} \text{ action}) = Q\} = (P \subseteq Q \& Q \subseteq P) \)
apply (rule)
apply (simp add: ref-def)
apply (auto simp add: ref-def fun-eq-iff relation-of-inject[symmetric])
done

lemma rd-ref:
  assumes A:R \( (P \vdash Q) \in \{ p. \text{is-CSP-process} p \} \)
  and B:R \( (P' \vdash Q') \in \{ p. \text{is-CSP-process} p \} \)
  and C:\( \forall a b. P (a, b) \Rightarrow (P' (a, b)) \)
  and D:\( \forall a b. Q' (a, b) \Rightarrow Q (a, b) \)
  shows \( \text{action-of} \ (R (P \vdash Q)) \in (\text{action-of} \ (R (P' \vdash Q'))) \)
apply (auto simp: ref-def)
apply (subst (asm) action-of-inverse, simp add: B[simplified])
apply (subst action-of-inverse, simp add: A[simplified])
apply (auto simp: rp-defs design-defs C D split: cond-splits)
done

lemma rd-impl:
  assumes A:R \( (P \vdash Q) \in \{ p. \text{is-CSP-process} p \} \)
and \( B:R \) (\( P' \vdash Q' \)) \( \in \{ p. \ is-CSP\text{-}process \ p \} \)
and \( C: \forall a. b. P (a, b) \implies P' (a, b) \)
and \( D: \forall a. b. Q' (a, b) \implies Q (a, b) \)
shows \( R \) (\( P' \vdash Q' \)) \( (a, b) \implies R \) (\( P \vdash Q \)) \( (a:('a::ev-eq, 'b) alpha-rp-scheme, b) \)
apply (insert rd-ref[of \( P \) \( P' \) \( Q' \), OF \( A \) \( B \) \( C \) \( D \)])
apply (auto simp: ref-def)
apply (subst (asm) action-of-inverse, simp add: B[simplified])
apply (subst (asm) action-of-inverse, simp add: A[simplified])
apply (erule-tac \( x = a \) in allE)
apply (erule-tac \( x = b \) in allE)
apply (auto)
done
end

17 Concrete example

theory Refinement-Example
imports Refinement
begin

In this section, we present a concrete example of the use of our environment. We define two Circus processes \( \text{FIG} \) and \( \text{DFIG} \), using our syntax. We give the proof of refinement (simulation) of the first process by the second one using the simulation function \( \text{Sim} \).

17.1 Process definitions

circus-process \( \text{FIG} \) =
  alphabet = \([v::nat, x::nat]\)
  state = \([idS::nat \ set]\)
  channel = \([out \ nat, req, ret \ nat]\)
  schema Init = idS' = {}\)
  schema Out = \( \exists a. v' = a \land a \notin idS \land idS' = idS \cup \{v'\} \)
  schema Remove = \( x \in idS \land idS' = idS - \{x\} \)
  where \( \forall v \bullet (\text{Schema FIG.Init})' \cdot\)
  \( \mu X \bullet (((\text{req} \rightarrow (\text{Schema FIG.Out}))')'; ' out!'(hd o v) \rightarrow \text{Skip}))\)
  \( \Box (\text{ret}'?x \rightarrow (\text{Schema FIG.Remove}))')'; ' X)\)

circus-process \( \text{DFIG} \) =
  alphabet = \([v::nat, x::nat]\)
  state = \([retidS::nat \ set, max::nat]\)
  channel = FIG-channels
  schema Init = retidS' = {} \land max' = 0
  schema Out = v' = max \land max' = (max + 1) \land retidS' = retidS - \{v'\}
  schema Remove = \( x < max \land retidS' = retidS \cup \{x\} \land max' = max \)
  where \( \forall v \bullet (\text{Schema DFIG.Init})' \cdot\)
\[
\mu X \bullet (\langle\langle \text{reg} \to (\text{Schema DFIG. Out}) \rangle; \langle \text{out'}!\langle \text{hd v} \to \text{Skip} \rangle \rangle; \langle \text{ret'x} \to (\text{Schema DFIG. Remove}) \rangle; \langle X \rangle) \\
\Box (ret'?x \to (\text{Schema DFIG. Remove})) \rangle; \langle X \rangle)
\]

definition Sim where
Sim \( A \equiv \text{FIG-alphabet.make} (\text{DFIG-alphabet.v} A) (\text{DFIG-alphabet.x} A) \)
\( \{a. a < (\text{DFIG-alphabet.max} A) \land a \notin (\text{DFIG-alphabet.retidS} A)\} \)

17.2 Simulation proofs

For the simulation proof, we give first proofs for simulation over the schema expressions. The proof is then given over the main actions of the processes.

lemma SimInit: (Schema FIG.Init) \( \preceq \)Sim (Schema DFIG.Init)
apply (auto simp: Sim-def Pre-def design-defs DFIG.Init-def FIG.Init-def rp-defs alpha-rp.defs
DFIG-alphabet.defs FIG-alphabet.defs intro!: Schema-Sim)
apply (rule-tac x =A (| max:= 0, retidS := {} |)
in exI, simp)
done

lemma SimOut: (Schema FIG.Out) \( \preceq \)Sim (Schema DFIG.Out)
apply (rule Schema-Sim)
apply (auto simp: Pre-def DFIG-alphabet.defs FIG-alphabet.defs
DFIG-alphabet.defs Sim-def FIG.Init-def DFIG.Init-def DFIG.Out-def DFIG-Out-def)
apply (rule-tac x =a (v := [DFIG-alphabet.max a], max := (Suc (DFIG-alphabet.max a)),
retidS := retidS a - \{DFIG-alphabet.max a\} |)
in exI, simp)
apply (rule-tac x =a (v := [DFIG-alphabet.max a], max := (Suc (DFIG-alphabet.max a)),
retidS := retidS a - \{DFIG-alphabet.max a\} |)
in exI, simp)
done

lemma SimRemove: (Schema FIG.Remove) \( \preceq \)Sim (Schema DFIG.Remove)
apply (rule Schema-Sim)
apply (auto simp: Pre-def DFIG-alphabet.defs FIG-alphabet.defs alpha-rp.defs Sim-def)
apply (clarsimp simp add: DFIG.Remove-def FIG.Remove-def
DFIG.Remove-def Sim-def)
apply (rule-tac x =a (retidS := insert (hd (DFIG-alphabet.x a)) (retidS a)) |)
in exI, simp)
apply (auto simp add: DFIG.Remove-def FIG.Remove-def
DFIG.Remove-def Sim-def)
done

lemma FIG.FIG \( \preceq \)Sim DFIG.DFIG
by (auto simp: DFIG.DFIG-def FIG.FIG-def mono-Seq SimRemove SimOut SimInit Sim-def FIG-alphabet.defs
intro!: Var-Sim Seq-Sim Mu-Sim Det-Sim Write0-Sim Write-Sim Read-Sim Skip-Sim)
end
References


