Fun With Tilings
Tobias Nipkow and Lawrence Paulson
September 19, 2015

Abstract
Tilings are defined inductively. It is shown that one form of mutilated chess board cannot be tiled with dominoes, while another one can be tiled with L-shaped tiles.

Sections 1 and 2 are by Paulson and described elsewhere [1]. Section 3 is by Nipkow and formalizes a well-known argument from the literature [2]. Please add further fun examples of this kind!

theory Tilings imports Main begin

1 Inductive Tiling

inductive-set tiling :: 'a set set ⇒ 'a set set
for A :: 'a set set where
empty [simp, intro]: \{\} ∈ tiling A |
Un [simp, intro]: \[a ∈ A; t ∈ tiling A; a ∩ t = \{\} \] ⇒ a ∪ t ∈ tiling A

lemma tiling-UnI [intro]:
\[t ∈ tiling A; u ∈ tiling A; t ∩ u = \{\} \] ⇒ t ∪ u ∈ tiling A
⟨proof⟩

lemma tiling-Diff1E:
assumes t−a ∈ tiling A and a ∈ A and a ⊆ t
shows t ∈ tiling A
⟨proof⟩

lemma tiling-finite:
assumes ∨a. a ∈ A ⇒ finite a
shows t ∈ tiling A ⇒ finite t
⟨proof⟩
2 The Mutilated Chess Board Cannot be Tiled by Dominoes

The originator of this problem is Max Black, according to J A Robinson. It was popularized as the Mutilated Checkerboard Problem by J McCarthy.

inductive-set domino :: (nat × nat) set set where

horiz [simp]: \{ (i, j), (i, Suc j) \} ∈ domino |

vertl [simp]: \{ (i, j), (Suc i, j) \} ∈ domino

lemma domino-finite: d ∈ domino ⇒ finite d

⟨proof⟩

declare tiling-finite[OF domino-finite, simp]

Sets of squares of the given colour

definition coloured :: nat ⇒ (nat × nat) set where

coloured b = \{ (i, j). (i + j) mod 2 = b \}

abbreviation whites :: (nat × nat) set where

whites ≡ coloured 0

abbreviation blacks :: (nat × nat) set where

blacks ≡ coloured (Suc 0)

Chess boards

lemma Sigma-Suc1 [simp]:

\{ 0..< Suc n \} × B = (\{ n \} × B) ∪ (\{ 0..<n \} × B)

⟨proof⟩

lemma Sigma-Suc2 [simp]:

A × \{ 0..< Suc n \} = (A × \{ n \}) ∪ (A × \{ 0..<n \})

⟨proof⟩

lemma dominoes-tile-row [intro!]: \{ i \} × \{ 0..< 2*n \} ∈ tiling domino

⟨proof⟩

lemma dominoes-tile-matrix: \{ 0..<m \} × \{ 0..< 2*n \} ∈ tiling domino

⟨proof⟩

coloured and Dominoes

lemma coloured-insert [simp]:

coloured b ∩ (insert (i, j) t) =

(if (i + j) mod 2 = b then insert (i, j) (coloured b ∩ t)

else coloured b ∩ t)
proof

lemma domino-singletons:
\(d \in \text{domino} \implies \)
(\(\exists \ i \ j. \ whites \cap d = \{(i, j)\} \) \) \land
(\(\exists m \ n. \ blacks \cap d = \{(m, n)\} \))

⟨proof⟩

Tilings of dominoes

declare
Int-Un-distrib [simp]
Diff-Int-distrib [simp]

lemma tiling-domino-0-1:
\(t \in \text{tiling \ domino} \implies \)
\(\text{card}(whites \cap t) = \text{card}(blacks \cap t) \)

⟨proof⟩

Final argument is surprisingly complex

theorem gen-mutil-not-tiling:
\(t \in \text{tiling \ domino} \implies \)
\((i + j) \mod 2 = 0 \implies (m + n) \mod 2 = 0 \implies \)
\(\{(i, j), (m, n)\} \subseteq t \)
\(\implies (t - \{(i,j)\} - \{(m,n)\}) \notin \text{tiling \ domino} \)

⟨proof⟩

Apply the general theorem to the well-known case

theorem mutil-not-tiling:
\(t = \{0..< 2 * \text{Suc} \ m\} \times \{0..< 2 * \text{Suc} \ n\} \)
\(\implies t - \{(0,0)\} - \{(\text{Suc}(2 * m), \text{Suc}(2 * n))\} \notin \text{tiling \ domino} \)

⟨proof⟩

3 The Mutilated Chess Board Can be Tiled by Ls

Remove an arbitrary square from a chess board of size \(2^n \times 2^n \). The result can be tiled by L-shaped tiles. The four possible L-shaped tiles are obtained by dropping one of the four squares from \(\{(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1)\} \):

definition L2 (x::nat) (y::nat) = \{(x,y), (x+1,y), (x, y+1)\}
definition L3 (x::nat) (y::nat) = \{(x,y), (x+1,y), (x+1, y+1)\}
definition L0 (x::nat) (y::nat) = \{(x+1,y), (x,y+1), (x+1, y+1)\}
definition L1 (x::nat) (y::nat) = \{(x,y), (x,y+1), (x+1, y+1)\}

All tiles:

definition Ls :: (nat * nat) set set where
Ls \equiv \{ L0 x y | x y. True \} \cup \{ L1 x y | x y. True \} \cup
\{ L2 x y | x y. True \} \cup \{ L3 x y | x y. True \}

3
lemma LinLs: L0 i j : Ls & L1 i j : Ls & L2 i j : Ls & L3 i j : Ls
 ⟨proof⟩

Square $2^n \times 2^n$ grid, shifted by i and j:

definition square2 (n::nat) (i::nat) (j::nat) = \{i..<2^n+i\} \times \{j..<2^n+j\}

lemma in-square2 [simp]:
 (a,b) : square2 n i j \iff i\leq a \land a<2^n+i \land j\leq b \land b<2^n+j
 ⟨proof⟩

lemma square2-Suc: square2 (Suc n) i j =
 square2 n i j \cup square2 n (2^n + i) j \cup square2 n i (2^n + j) \cup
 square2 n (2^n + i) (2^n + j)
 ⟨proof⟩

lemma square2-disj: square2 n i j \cap square2 n x y = {} \iff
 (2^n+i \leq x \lor 2^n+x \leq i) \lor (2^n+j \leq y \lor 2^n+y \leq j) (is A = B)
 ⟨proof⟩

Some specific lemmas:

lemma pos-pow2: (0::nat) < 2^n\{n::nat\}
 ⟨proof⟩

declare nat-zero-less-power-iff [simp del] zero-less-power [simp del]

lemma Diff-insert-if: shows
 B \neq \{} \Longrightarrow a:A \Longrightarrow A - insert a B = (A-B - \{a\}) and
 B \neq \{} \Longrightarrow a:\sim: A \Longrightarrow A - insert a B = A-B
 ⟨proof⟩

lemma DisjI1: A Int B = \{} \Longrightarrow (A-X) Int B = \{}
 ⟨proof⟩

lemma DisjI2: A Int B = \{} \Longrightarrow A Int (B-X) = \{}
 ⟨proof⟩

The main theorem:

theorem Ls-can-tile: i \leq a \Longrightarrow a < 2^n + i \Longrightarrow j \leq b \Longrightarrow b < 2^n + j
 \Longrightarrow square2 n i j - \{(a,b)\} : tiling Ls
 ⟨proof⟩

corollary Ls-can-tile00:
 a < 2^n \Longrightarrow b < 2^n \Longrightarrow square2 n 0 0 - \{(a, b)\} \in tiling Ls
 ⟨proof⟩

end
References
