Jive Data and Store Model

Norbert Schirmer
TU München
schirmer@informatik.tu-muenchen.de

Nicole Rauch
TU Kaiserslautern
rauch@informatik.uni-kl.de

Abstract

This document presents the formalization of an object-oriented data and store model in ISABELLE/HOL. This model is being used in the Java Interactive Verification Environment, JIVE.
15 The Universal Specification
1 Introduction

Jive [MPH00, Jiv] is a verification system that is being developed at the University of Kaiserslautern and at the ETH Zürich. It is an interactive special-purpose theorem prover for the verification of object-oriented programs on the basis of a partial-correctness Hoare-style programming logic. Jive operates on Java-KE [PHGR05], a desugared subset of sequential Java which contains all important features of object-oriented languages (subtyping, exceptions, static and dynamic method invocation, etc.). Jive is written in Java and currently has a size of about 40,000 lines of code.

Jive is able to operate on completely unannotated programs, allowing the user to dynamically add specifications. It is also possible to preliminarily annotate programs with invariants, pre- and postconditions using the specification language JML [LBR99]. In practice, a mixture of both techniques is employed, in which the user extends and refines the pre-annotated specifications during the verification process. The program to be verified, together with the specifications, is translated to Hoare sequents. Program and pre-annotated specifications are translated during startup, while the dynamically added specifications are translated whenever they are entered by the user. Hoare sequents have the shape $\mathcal{A} \vdash \{ P \} \text{pp} \{ Q \}$ and express that for all states S that fulfill P, if the execution of the program part pp terminates, the state that is reached when pp has been evaluated in S must fulfill Q. The so-called assumptions \mathcal{A} are used to prove recursive methods.

Jive’s logic contains so-called Hoare rules and axioms. The rules consist of one or more Hoare sequents that represent the assumptions of the rule, and a Hoare sequent which is the conclusion of the rule. Axioms consist of only one Hoare sequent; they do not have assumptions. Therefore, axioms represent the known facts of the Hoare logic.

To prove a program specification, the user directly works on the program source code. Proofs can be performed in backward direction and in forward direction. In backward direction, an initial open proof goal is reduced to new, smaller open subgoals by applying a rule. This process is repeated for the smaller subgoals until eventually each open subgoal can be closed by the application of an axiom. If all open subgoals are proven by axioms, the initial goal is proven as well.

In forward direction, the axioms can be used to establish known facts about the statements of a given program. The rules are then used to produce new facts from these already known facts. This way, facts can be constructed for parts of the program.

A large number of the rules and axioms of the Hoare logic is related to the structure of the program part that is currently being examined. Besides these, the logic also contains rules that manipulate the pre- or postcondition of the examined subgoal without affecting the current program part selection. A prominent member of this kind of rules is the rule of consequence1:

$$\frac{\text{PP} \Rightarrow P \quad \mathcal{A} \vdash \{ P \} \text{pp} \{ Q \} \quad Q \Rightarrow QQ}{\mathcal{A} \vdash \{ \text{PP} \} \text{pp} \{ QQ \}}$$

It plays a special role in the Hoare logic because it additionally requires implications between stronger and weaker conditions to be proven. If a Jive proof contains an application of the rule of consequence, the implication is attached to the proof tree node that documents this rule application; these attachments are called lemmas. Jive sends these lemmas to an associated

1In Jive, the rule of consequence is part of a larger rule which serves several purposes at once. Since we want to focus on the rule of consequence, we left out the parts that are irrelevant in this context.
general purpose theorem prover where the user is required to prove them. Currently, JIVE supports ISABELLE/HOL as associated prover. It is required that all lemmas that are attached to any node of a proof tree are proven before the initial goal of the proof tree is accepted as being proven.

In order to prove these logical predicates, ISABELLE/HOL needs a data and store model of JAVA-KE. This model acts as an interface between JIVE and ISABELLE/HOL.

The first paper-and-pencil formalization of the data and store model was given in Arnd Poetzsch-Heffter’s habilitation thesis [PH97, Sect. 3.1.2]. The first machine-supported formalization was performed in PVS by Peter Müller, by translating the axioms given in [PH97] to axioms in PVS. The formalization presented in this report extends the PVS formalization. The axioms have been replaced by conservative extensions and proven lemmas, thus there is no longer any possibility to accidentally introduce unsoundness.

Some changes were made to the PVS theories during the conversion. Some were caused due to the differences in the tools ISABELLE/HOL and PVS, but some are more conceptional. Here is a list of the major changes.

- In PVS, function arguments were sometimes restricted to subtypes. In ISABELLE/HOL, unintended usage of functions is left unspecified.

- In PVS, the program-independent theories were parameterized by the datatypes that were generated for the program to be verified. In ISABELLE/HOL, we just build on the generated theories. This makes the whole setting easier. The drawback is that we have to run the theories for each program we want to verify. But the proof scripts are designed in a way that they will work if the basic program-dependent theories are generated in the proper way. Since we can create an image of a proof session before starting actual verification we do not run into time problems either.

- The subtype relation is based on the direct subtype relation between classes and interfaces. We prove that subtyping forms a partial order. In the PVS version subtyping was expressed by axioms that described the subtype relation for the types appearing in the Java program to be verified.

Besides these changes we also added new concepts to the model. We can now deal with static fields and arrays. This way, the model supports programming languages that are much richer than JAVA-KE to allow for future extensions of JIVE.

Please note that although the typographic conventions in Isabelle suggest that constructors start with a capital letter while types do not, we kept the capitalization as it was before (which means that types start with a capital letter while constructors usually do not) to keep the naming more uniform across the various JIVE-related publications.

The theories presented in this report require the use of ISABELLE 2005. The proofs of lemmas are skipped in the presentation to keep it compact. The full proofs can be found in the original ISABELLE theories.
2 Theory Dependencies

The theories “TypeIds”, “DirectSubtypes”, “Attributes” and “UnivSpec” are program-dependent and are generated by the Jive tool. The program-dependent theories presented in this report are just examples and act as placeholders. The theories are stored in four different directories:

Isabelle:
- JavaType.thy
- Subtype.thy
- Value.thy
- JML.thy

Isabelle_Store:
- AttributesIndep.thy
- Location.thy
- Store.thy
- StoreProperties.thy

Isa_(Prog):
- TypeIds.thy
- DirectSubtypes.thy
- UnivSpec.thy

Isa_(Prog)_Store:
- Attributes.thy
In this naming convention, the suffix “_Store” denotes those theories that depend on the actual realization of the Store. They have been separated in order to allow for easy exchanging of the Store realization. The midfix “⟨Prog⟩” denotes the name of the program for which the program-dependent theories have been generated. This way, different program-dependent theories can reside side-by-side without conflicts.

These four directories have to be added to the ML path before loading UnivSpec. This can be done in a setup theory with the following command (here applied to a program called Counter):

```ml
ML {*
  add_path "<PATH_TO_THEORIES>/Isabelle";
  add_path "<PATH_TO_THEORIES>/Isabelle_Store";
  add_path "<PATH_TO_THEORIES>/Isa_Counter";
  add_path "<PATH_TO_THEORIES>/Isa_Counter.Store";
*}
```

This way, one can select the program-dependent theories for the program that currently is to be proven.

3 The Example Program

The program-dependent theories are generated for the following example program:

```java
interface Counter {
    public int incr();
    public int reset();
}

class CounterImpl implements Counter {
    protected int value;
    public int incr()
    {
        int dummy;
        res = this.value;
        res = (int) res + 1;
        this.value = res;
    }
    public int reset()
    {
        int dummy;
        this.value=0;
        res = (int) 0;
    }
}

class UndoCounter extends CounterImpl {
    private int save;
```
public int incr()
{
 int dummy;
 res = this.value;
 this.save = res;
 res = res + 1;
 this.value = res;
}

public int un_do()
{
 int res2;
 res = this.save;
 res2 = this.value;
 this.value = res;
 this.save = res2;
}

4 TypeIds

theory TypeIds imports Main begin

This theory contains the program specific names of abstract and concrete classes and interfaces. It has to be generated for each program we want to verify. The following classes are an example taken from the program given in Sect. 3. They are complemented by the classes that are known to exist in each Java program implicitly, namely Object, Exception, ClassCastException and NullPointerException. The example program does not contain any abstract classes, but since we cannot formalize datatypes without constructors, we have to insert a dummy class which we call Dummy.

The datatype CTypeId must contain a constructor called Object because subsequent proofs in the Subtype theory rely on it.

datatype CTypeId = CounterImpl | UndoCounter
 | Object | Exception | ClassCastException | NullPointerException
— The last line contains the classes that exist in every program by default.

datatype ITypeId = Counter

datatype ATTypeId = Dummy
— we cannot have an empty type.

Why do we need different datatypes for the different type identifiers? Because we want to be able to distinguish the different identifier kinds. This has a practical reason: If we formalize objects as "ObjectId × TypeId" and if we quantify over all objects, we get a lot of objects that do not exist, namely all objects that bear an interface type identifier or abstract class identifier. This is not very helpful. Therefore, we separate the three identifier kinds from each other.

end

5 Java-Type

theory JavaType imports ../Isa-Counter/TypeIds
begin
This theory formalizes the types that appear in a Java program. Note that the types defined by
the classes and interfaces are formalized via their identifiers. This way, this theory is program-
independent.

We only want to formalize one-dimensional arrays. Therefore, we describe the types that can
be used as element types of arrays. This excludes the `null` type and array types themselves.
This way, we get a finite number of types in our type hierarchy, and the subtype relations can
be given explicitly (see Sec. 6). If desired, this can be extended in the future by using Javatype
as argument type of the `ArrT` type constructor. This will yield infinitely many types.

\[
\text{datatype } \text{Arraytype} = \text{BoolAT} \mid \text{IntgAT} \mid \text{ShortAT} \mid \text{ByteAT} \\
\quad \mid \text{CClassAT CTtypeId} \mid \text{AClassAT ATtypeId} \\
\quad \mid \text{InterfaceAT ITtypeId}
\]

\[
\text{datatype } \text{Javatype} = \text{BoolT} \mid \text{IntgT} \mid \text{ShortT} \mid \text{ByteT} \mid \text{NullT} \mid \text{ArrT Arraytype} \\
\quad \mid \text{CClassT CTtypeId} \mid \text{AClassT ATtypeId} \\
\quad \mid \text{InterfaceT ITtypeId}
\]

We need a function that widens `Arraytype` to `Javatype`.

\[
definition \text{at2jt} :: \text{Arraytype} \Rightarrow \text{Javatype}
\]

\[
\text{where}
\begin{align*}
\text{at2jt at} &= \text{case at of} \\
\text{BoolAT} &\Rightarrow \text{BoolT} \\
\text{IntgAT} &\Rightarrow \text{IntgT} \\
\text{ShortAT} &\Rightarrow \text{ShortT} \\
\text{ByteAT} &\Rightarrow \text{ByteT} \\
\text{CClassAT CTtypeId} &\Rightarrow \text{CClassT CTtypeId} \\
\text{AClassAT ATtypeId} &\Rightarrow \text{AClassT ATtypeId} \\
\text{InterfaceAT ITtypeId} &\Rightarrow \text{InterfaceT ITtypeId}
\end{align*}
\]

We define two predicates that separate the primitive types and the class types.

\[
\text{primrec isprimitive:: } \text{Javatype} \Rightarrow \text{bool}
\]

\[
\text{where}
\begin{align*}
\text{isprimitive BoolT} &= \text{True} \\
\text{isprimitive IntgT} &= \text{True} \\
\text{isprimitive ShortT} &= \text{True} \\
\text{isprimitive ByteT} &= \text{True} \\
\text{isprimitive NullT} &= \text{False} \\
\text{isprimitive (ArrT T)} &= \text{False} \\
\text{isprimitive (CClassT c)} &= \text{False} \\
\text{isprimitive (AClassT c)} &= \text{False} \\
\text{isprimitive (InterfaceT i)} &= \text{False}
\end{align*}
\]

\[
\text{primrec isclass:: } \text{Javatype} \Rightarrow \text{bool}
\]

\[
\text{where}
\begin{align*}
\text{isclass BoolT} &= \text{False} \\
\text{isclass IntgT} &= \text{False} \\
\text{isclass ShortT} &= \text{False} \\
\text{isclass ByteT} &= \text{False} \\
\text{isclass NullT} &= \text{False} \\
\text{isclass (ArrT T)} &= \text{False} \\
\text{isclass (CClassT c)} &= \text{True} \\
\text{isclass (AClassT c)} &= \text{True}
\end{align*}
\]
isclass (InterfaceT i) = False

end

6 The Direct Subtype Relation of Java Types

theory DirectSubtypes
imports ../Isabelle/JavaType
begin

In this theory, we formalize the direct subtype relations of the Java types (as defined in Sec. 4) that appear in the program to be verified. Thus, this theory has to be generated for each program.

We have the following type hierarchy:

We need to describe all direct subtype relations of this type hierarchy. As you can see in the picture, all unnecessary direct subtype relations can be ignored, e.g. the subclass relation between CounterImpl and Object, because it is added transitively by the widening relation of types (see Sec. 7.2).

We have to specify the direct subtype relation between

- each “leaf” class or interface and its subtype NullT
- each “root” class or interface and its supertype Object
- each two types that are direct subtypes as specified in the code by extends or implements
- each array type of a primitive type and its subtype NullT
- each array type of a primitive type and its supertype Object
- each array type of a “leaf” class or interface and its subtype NullT
- the array type Object[] and its supertype Object
The Direct Subtype Relation of Java Types

- two array types if their element types are in a subtype hierarchy

definition direct-subtype :: (Javatype * Javatype) set where
direct-subtype =
{(NullT, AClassT Dummy),
 (NullT, CClassT UndoCounter),
 (NullT, CClassT NullPointerException),
 (NullT, CClassT ClassCastException),
 (AClassT Dummy, CClassT Object),
 (InterfaceT Counter, CClassT Object),
 (CClassT Exception, CClassT Object),
 (CClassT UndoCounter, CClassT CounterImpl),
 (CClassT CounterImpl, InterfaceT Counter),
 (CClassT NullPointerException, CClassT Exception),
 (CClassT ClassCastException, CClassT Exception),
 (NullT, ArrT BoolAT),
 (NullT, ArrT IntgAT),
 (NullT, ArrT ShortAT),
 (NullT, ArrT ByteAT),
 (ArrT BoolAT, CClassT Object),
 (ArrT IntgAT, CClassT Object),
 (ArrT ShortAT, CClassT Object),
 (ArrT ByteAT, CClassT Object),
 (NullT, ArrT (AClassAT Dummy)),
 (NullT, ArrT (CClassAT UndoCounter)),
 (NullT, ArrT (CClassAT NullPointerException)),
 (NullT, ArrT (CClassAT ClassCastException)),
 (ArrT (CClassAT Object), CClassT Object),
 (ArrT (AClassAT Dummy), ArrT (CClassAT Object)),
 (ArrT (CClassAT CounterImpl), ArrT (InterfaceAT Counter)),
 (ArrT (InterfaceAT Counter), ArrT (CClassAT Object)),
 (ArrT (CClassAT Exception), ArrT (CClassAT Object)),
 (ArrT (CClassAT UndoCounter), ArrT (CClassAT CounterImpl)),
 (ArrT (CClassAT NullPointerException), ArrT (CClassAT Exception)),
 (ArrT (CClassAT ClassCastException), ArrT (CClassAT Exception))
}

This lemma is used later in the Simplifier.

lemma direct-subtype:
(NullT, AClassT Dummy) ∈ direct-subtype
(NullT, CClassT UndoCounter) ∈ direct-subtype
(NullT, CClassT NullPointerException) ∈ direct-subtype
(NullT, CClassT ClassCastException) ∈ direct-subtype
(AClassT Dummy, CClassT Object) ∈ direct-subtype
(InterfaceT Counter, CClassT Object) ∈ direct-subtype
(CClassT Exception, CClassT Object) ∈ direct-subtype
(CClassT UndoCounter, CClassT CounterImpl) ∈ direct-subtype
(CClassT CounterImpl, InterfaceT Counter) ∈ direct-subtype
(CClassT NullPointerException, CClassT Exception) ∈ direct-subtype
(CClassT ClassCastException, CClassT Exception) ∈ direct-subtype

(NullT, ArrT BoolAT) ∈ direct-subtype
(NullT, ArrT IntgAT) ∈ direct-subtype
(NullT, ArrT ShortAT) ∈ direct-subtype
(NullT, ArrT ByteAT) ∈ direct-subtype
(ArrT BoolAT, CClassT Object) ∈ direct-subtype
(ArrT IntgAT, CClassT Object) ∈ direct-subtype
(ArrT ShortAT, CClassT Object) ∈ direct-subtype
(ArrT ByteAT, CClassT Object) ∈ direct-subtype

(ArrT (CClassAT Object), CClassT Object) ∈ direct-subtype

(ArrT (CClassAT Dummy), ArrT (CClassAT Object)) ∈ direct-subtype
(ArrT (CClassAT CounterImpl), ArrT (InterfaceAT Counter)) ∈ direct-subtype
(ArrT (InterfaceAT Counter), ArrT (CClassAT Object)) ∈ direct-subtype
(ArrT (CClassAT Exception), ArrT (CClassAT Object)) ∈ direct-subtype
(ArrT (CClassAT UndoCounter), ArrT (CClassAT CounterImpl)) ∈ direct-subtype
(ArrT (CClassAT NullPointerException), ArrT (CClassAT Exception)) ∈ direct-subtype
(ArrT (CClassAT ClassCastException), ArrT (CClassAT Exception)) ∈ direct-subtype

by (simp-all add: direct-subtype-def)

end

7 Widening the Direct Subtype Relation

theory Subtype
imports ../Isa-Counter/DirectSubtypes
begin

In this theory, we define the widening subtype relation of types and prove that it is a partial order.

7.1 Auxiliary lemmas

These general lemmas are not especially related to Jive. They capture some useful properties of general relations.

lemma distinct-rtrancl-into-trancl:
assumes neq-x-y: x≠y
assumes x-y-rtrancl: (x,y) ∈ r\ast
shows (x,y) ∈ r\ast
using x-y-rtrancl neq-x-y
proof (induct)
assume x≠x thus (x,x) ∈ r\ast by simp
next
 fix \(y \) \(z \)
 assume \(x-y\text{-rtrancl} \): \((x, y) \in r^* \)
 assume \(y-z\text{-r} \): \((y, z) \in r \)
 assume \(x \neq y \implies (x, y) \in r^+ \)
 assume \(x \neq z \)
 from \(x-y\text{-rtrancl} \)
 show \((x, z) \in r^+ \)
proof (cases)
 assume \(x=y \)
 with \(y-z\text{-r} \) have \((x,z) \in r \) by simp
 thus \((x,z) \in r^+ \).
next
 fix \(w \)
 assume \((x, w) \in r^* \)
 moreover assume \((w, y) \in r \)
 ultimately have \((x,y) \in r^+ \)
 by (rule rtrancl-into-trancl1)
 from this \(y-z\text{-r} \)
 show \((x, z) \in r^+ \).
qed

lemma acyclic-imp-antisym-rtrancl: acyclic \(r \implies \text{antisym} \ (r^*) \)
proof (clarsimp simp only: acyclic_def antisym_def)
 fix \(x \) \(y \)
 assume acyclic: \(\forall x. (x, x) \notin r^+ \)
 assume \(x-y\text{-r} \): \((x, y) \in r^* \)
 assume \(y-x\text{-r} \): \((y, x) \in r^* \)
 show \(x=y \)
proof (cases \(x=y \))
 case True thus \(?\text{thesis} \).
next
case False
 from False \(x-y\text{-r} \) have \((x, y) \in r^+ \)
 by (rule distinct-rtrancl-into-trancl)
 also
 from False \(y-x\text{-r} \) have \((y, x) \in r^+ \)
 by (fastforce intro: distinct-rtrancl-into-trancl)
 finally have \((x, x) \in r^+ \).
 with acyclic show \(?\text{thesis} \) by simp
qed

lemma acyclic-trancl-rtrancl:
 assumes acyclic: acyclic \(r \)
 shows \((x,y) \in r^+ = ((x,y) \in r^* \land x\neq y) \)
proof
 assume \(x-y\text{-trancl} \): \((x,y) \in r^+ \)
 show \((x,y) \in r^* \land x\neq y \)
proof
 from \(x-y\text{-trancl} \) show \((x,y) \in r^+ \).
 next
 from \(x-y\text{-trancl} \) acyclic show \(x\neq y \) by (auto simp add: acyclic-def)
7.2 The Widening (Subtype) Relation of Javatypes

In this section we widen the direct subtype relations specified in Sec. 6. It is done by a calculation of the transitive closure of the direct subtype relation.

This is the concrete syntax that expresses the subtype relations between all types.

abbreviation

direct-subtype-syntax :: Javatype ⇒ Javatype ⇒ bool (-≺- [71,71] 70)

where — direct subtype relation

A ≺ B == (A,B) ∈ direct-subtype

abbreviation

widen-syntax :: Javatype ⇒ Javatype ⇒ bool (-⪯- [71,71] 70)

where — reflexive transitive closure of direct subtype relation

A ⪯ B == (A,B) ∈ direct-subtype

abbreviation

widen-strict-syntax :: Javatype ⇒ Javatype ⇒ bool (-≺- [71,71] 70)

where — transitive closure of direct subtype relation

A ≺ B == (A,B) ∈ direct-subtype

7.3 The Subtype Relation as Partial Order

We prove the axioms required for partial orders, i.e. reflexivity, transitivity and antisymmetry, for the widened subtype relation. The direct subtype relation has been defined in Sec. 6. The reflexivity lemma is added to the Simplifier and to the Classical reasoner (via the attribute iff), and the transitivity and antisymmetry lemmas are made known as transitivity rules (via the attribute trans). This way, these lemmas will be automatically used in subsequent proofs.

lemma acyclic-direct-subtype: acyclic direct-subtype

proof (clarsimp simp add: acyclic-def)

fix x show x ≺ x ⇒ False

by (cases x) (fastforce elim: tranclE simp add: direct-subtype-def)+

qed

lemma antisymp-rtrancl-direct-subtype: antisymp (direct-subtype*)

using acyclic-direct-subtype by (rule acyclic-imp-antisym-rtrancl)

lemma widen-strict-to-widen: C ≺ D = (C ⪯ D ∧ C≠D)

using acyclic-direct-subtype by (rule acyclic-trancl-rtrancl)

The widening relation on Javatype is reflexive.

lemma widen-refl [iff]: X ⪯ X ..

The widening relation on Javatype is transitive.
lemma widen-trans [trans]:
 assumes a-b: a ≤ b
 shows ∨ c. b ≤ c ⇒ a ≤ c
 by (insert a-b, rule rtrancl-trans)

The widening relation on Javatype is antisymmetric.

lemma widen-antisym [trans]:
 assumes a-b: a ≤ b
 assumes b-c: b ≤ a
 shows a = b
 using a-b b-c antisym-rtrancl-direct-subtype
 by (unfold antisym-def) blast

7.4 Javatype Ordering Properties

The type class ord allows us to overwrite the two comparison operators < and ≤. These are the two comparison operators on Javatype that we want to use subsequently.

We can also prove that Javatype is in the type class order. For this we have to prove reflexivity, transitivity, antisymmetry and that < and ≤ are defined in such a way that (x < y) = (x ≤ y ∧ x ≠ y) holds. This proof can easily be achieved by using the lemmas proved above and the definition of less-Javatype-def.

instantiation Javatype:: order
begin

definition le-Javatype-def: A ≤ B ≡ A ≤ B

definition less-Javatype-def: A < B ≡ A ≤ B ∧ ¬ B ≤ (A::Javatype)

instance proof
 fix x y z:: Javatype
 {
 show x ≤ x
 by (simp add: le-Javatype-def)
 next
 assume x ≤ y y ≤ z
 then show x ≤ z
 by (unfold le-Javatype-def) (rule rtrancl-trans)
 next
 assume x ≤ y y ≤ x
 then show x = y
 apply (unfold le-Javatype-def)
 apply (rule widen-antisym)
 apply assumption +
 done
 next
 show (x < y) = (x ≤ y ∧ ¬ y ≤ x)
 by (simp add: less-Javatype-def)
 }
 qed
7.5 Enhancing the Simplifier

lemmas subtype-defs = le-Javatype-def less-Javatype-def

direct-subtype-def

lemmas subtype-ok-simps = subtype-defs

lemmas subtype-wrong-elims = rtranclE

During verification we will often have to solve the goal that one type widens to the other. So we equip the simplifier with a special solver-tactic.

lemma widen-asm: (a::Javatype) ≤ b ⇒ a ≤ b

by simp

lemmas direct-subtype-widened = direct-subtype[THEN r-into-rtrancl]

ML ⟨⟨
local val ss = simpset-of @{context} in

fun widen-tac ctxt =
 resolve-tac ctxt @{thms widen-asm} THEN'
 simp-tac (put-simpset ss ctxt addsimp @{thms le-Javatype-def}) THEN'
 Method.insert-tac @{thms direct-subtype-widened} THEN'
 simp-tac (put-simpset (simpset-of @{theory-context Transitive-Closure}) ctxt)

end ⟩⟩

declaration ⟨⟨ fn - =>
 Simplifier.map-ss (fn ss => ss addSolver (mk-solver widen widen-tac)) ⟩⟩

In this solver-tactic, we first try the trivial resolution with widen-asm to check if the actual subgoal really is a request to solve a subtyping problem. If so, we unfold the comparison operator, insert the direct subtype relations and call the simplifier.

7.6 Properties of the Subtype Relation

The class Object has to be the root of the class hierarchy, i.e. it is supertype of each concrete class, abstract class, interface and array type. The proof scripts should run on every correctly generated type hierarchy.

lemma Object-root: CClassT C ≤ CClassT Object

by (cases C, simp-all)

lemma Object-root-abs: AClassT C ≤ CClassT Object

by (cases C, simp-all)

lemma Object-root-int: InterfaceT C ≤ CClassT Object

by (cases C, simp-all)

lemma Object-root-array: ArrT C ≤ CClassT Object
proof \((\text{cases } C)\)

fix \(x\)
assume \(c : C = \text{CClassAT } x\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by \((\text{cases } x, \text{simp-all})\)

next
fix \(x\)
assume \(c : C = \text{AClassAT } x\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by \((\text{cases } x, \text{simp-all})\)

next
fix \(x\)
assume \(c : C = \text{InterfaceAT } x\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by \((\text{cases } x, \text{simp-all})\)

next
assume \(c : C = \text{BoolAT}\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by simp

next
assume \(c : C = \text{IntgAT}\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by simp

next
assume \(c : C = \text{ShortAT}\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by simp

next
assume \(c : C = \text{ByteAT}\)
show \(\text{ArrT } C \leq \text{CClassT } \text{Object}\)
 using \(c\) by simp

qed

If another type is (non-strict) supertype of Object, then it must be the type Object itself.

lemma \text{Object-rootD}:

assumes \(p : \text{CClassT } \text{Object} \leq c\)
shows \(\text{CClassT } \text{Object} = c\)

using \(p\)
apply \((\text{cases } c)\)
apply \((\text{fastforce elim: subtype-wrong-elims simp add: subtype-defs}) +\)
— In this lemma, we only get contradictory cases except for Object itself.
done

The type NullT has to be the leaf of each branch of the class hierarchy, i.e. it is subtype of each type.

lemma \text{NullT-leaf} \([\text{simp}]\): \(\text{NullT} \leq \text{CClassT } C\)
 by \((\text{cases } C, \text{simp-all})\)

lemma \text{NullT-leaf-abs} \([\text{simp}]\): \(\text{NullT} \leq \text{AClassT } C\)
 by \((\text{cases } C, \text{simp-all})\)

lemma \text{NullT-leaf-int} \([\text{simp}]\): \(\text{NullT} \leq \text{InterfaceT } C\)
 by \((\text{cases } C, \text{simp-all})\)
lemma NullT-leaf-array: NullT ≤ ArrT C

proof (cases C)
 fix x
 assume c: C = CClassAT x
 show NullT ≤ ArrT C
 using c by (cases x, simp-all)
 next
 fix x
 assume c: C = AClassAT x
 show NullT ≤ ArrT C
 using c by (cases x, simp-all)
 next
 fix x
 assume c: C = InterfaceAT x
 show NullT ≤ ArrT C
 using c by (cases x, simp-all)
 next
 assume c: C = BoolAT
 show NullT ≤ ArrT C
 using c by simp
 next
 assume c: C = IntgAT
 show NullT ≤ ArrT C
 using c by simp
 next
 assume c: C = ShortAT
 show NullT ≤ ArrT C
 using c by simp
 next
 assume c: C = ByteAT
 show NullT ≤ ArrT C
 using c by simp
qed
end

8 Attributes

theory Attributes
imports ../Isabelle/Subtype
begin

This theory has to be generated as well for each program under verification. It defines the attributes of the classes and various functions on them.

datatype AttId = CounterImpl'value | UndoCounter'save
| Dummy'dummy | Counter'dummy

The last two entries are only added to demonstrate what is to happen with attributes of abstract classes and interfaces.

It would be nice if attribute names were generated in a way that keeps them short, so that the proof state does not get unreadable because of fancy long names. The generation of attribute names that is performed by the Jive tool should only add the definition class if necessary,
i.e. if there would be a name clash otherwise. For the example above, the class names are not necessary. One must be careful, though, not to generate names that might clash with names of free variables that are used subsequently.

The domain type of an attribute is the definition class (or interface) of the attribute.

definition dtype:: AttId ⇒ Javatype where
dtype f = (case f of
 CounterImpl\'value ⇒ CClassT CounterImpl
 UndoCounter\'save ⇒ CClassT UndoCounter
 Dummy\'dummy ⇒ AClassT Dummy
 Counter\'dummy ⇒ InterfaceT Counter)

lemma dtype-simps [simp]:
dtype CounterImpl\'value = CClassT CounterImpl
dtype UndoCounter\'save = CClassT UndoCounter
dtype Dummy\'dummy = AClassT Dummy
dtype Counter\'dummy = InterfaceT Counter
 by (simp-all add: dtype-def dtype-def dtype-def)

For convenience, we add some functions that directly apply the selectors of the datatype JavaType.

definition cDTypeId :: AttId ⇒ CTypeId where
cDTypeId f = (case f of
 CounterImpl\'value ⇒ CounterImpl
 UndoCounter\'save ⇒ UndoCounter
 Dummy\'dummy ⇒ undefined
 Counter\'dummy ⇒ undefined)

definition aDTypeId:: AttId ⇒ ATypeId where
aDTypeId f = (case f of
 CounterImpl\'value ⇒ undefined
 UndoCounter\'save ⇒ undefined
 Dummy\'dummy ⇒ Dummy
 Counter\'dummy ⇒ undefined)

definition iDTypeId:: AttId ⇒ ITypeId where
iDTypeId f = (case f of
 CounterImpl\'value ⇒ undefined
 UndoCounter\'save ⇒ undefined
 Dummy\'dummy ⇒ undefined
 Counter\'dummy ⇒ Counter)

lemma DTypeId-simps [simp]:
cDTypeId CounterImpl\'value = CounterImpl
cDTypeId UndoCounter\'save = UndoCounter
aDTypeId Dummy\'dummy = Dummy
iDTypeId Counter\'dummy = Counter
 by (simp-all add: cDTypeId-def aDTypeId-def iDTypeId-def)

The range type of an attribute is the type of the value stored in that attribute.

definition rtype:: AttId ⇒ Javatype where
rtype f = (case f of
 CounterImpl\'value ⇒ IntgT
lemma rtype-simps [simp]:
 rtype CounterImpl'value = IntgT
 rtype UndoCounter'save = IntgT
 rtype Dummy'dummy = NullT
 rtype Counter'dummy = NullT

 by (simp-all add: rtype-def rtype-def rtype-def)

With the datatype $CAttId$ we describe the possible locations in memory for instance fields. We rule out the impossible combinations of class names and field names. For example, a $CounterImpl$ cannot have a $save$ field. A store model which provides locations for all possible combinations of the Cartesian product of class name and field name works out fine as well, because we cannot express modification of such “wrong” locations in a Java program. So we can only prove useful properties about reasonable combinations. The only drawback in such a model is that we cannot prove a property like $not-treach-ref-impl-not-reach$ in theory $StoreProperties$. If the store provides locations for every combination of class name and field name, we cannot rule out reachability of certain pointer chains that go through “wrong” locations. That is why we decided to introduce the new type $CAttId$.

While $AttId$ describes which fields are declared in which classes and interfaces, $CAttId$ describes which objects of which classes may contain which fields at run-time. Thus, $CAttId$ makes the inheritance of fields visible in the formalization.

There is only one such datatype because only objects of concrete classes can be created at run-time, thus only instance fields of concrete classes can occupy memory.

datatype $CAttId = CounterImpl'CounterImpl'value | UndoCounter'CounterImpl'value | UndoCounter'UndoCounter'save | CounterImpl'Counter'dummy | UndoCounter'Counter'dummy

definition catt :: $CTypeId \Rightarrow AttId \Rightarrow CAttId$ where
 catt C f =
 (case C of
 CounterImpl => (case f of
 CounterImpl'value => CounterImpl'CounterImpl'value
 UndoCounter'save => undefined
 Dummy'dummy => undefined
 Counter'dummy => CounterImpl'Counter'dummy)
 UndoCounter => (case f of
 CounterImpl'value => UndoCounter'CounterImpl'value
 UndoCounter'save => UndoCounter'UndoCounter'save
 Dummy'dummy => undefined
 Counter'dummy => UndoCounter'Counter'dummy)
 Object => undefined
 Exception => undefined
 ClassCastException => undefined
 NullPointerException => undefined
)
9 Program-Independent Lemmas on Attributes

theory AttributesIndep
imports ../Isa-Counter-Store/Attributes
begin

lemma catt-simps [simp]:
catt CounterImpl CounterImpl\' value = CounterImpl\' CounterImpl\' value
catt UndoCounter CounterImpl\' value = UndoCounter\' CounterImpl\' value
catt UndoCounter UndoCounter\' save = UndoCounter\' UndoCounter\' save
catt CounterImpl Counter\' dummy = CounterImpl\' Counter\' dummy
catt UndoCounter Counter\' dummy = UndoCounter\' Counter\' dummy
by (simp-all add: catt-def)

Selection of the class name of the type of the object in which the field lives. The field can only be located in a concrete class.

definition cls:: CAttId => CTypeId where
cls cf = (case cf of
 CounterImpl\' CounterImpl\' value => CounterImpl
| UndoCounter\' CounterImpl\' value => UndoCounter
| UndoCounter\' UndoCounter\' save => UndoCounter
| CounterImpl\' Counter\' dummy => CounterImpl
| UndoCounter\' Counter\' dummy => UndoCounter
)

lemma cls-simps [simp]:
cls CounterImpl\' CounterImpl\' value = CounterImpl
cls UndoCounter\' CounterImpl\' value = UndoCounter
cls UndoCounter\' UndoCounter\' save = UndoCounter
cls CounterImpl\' Counter\' dummy = CounterImpl
cls UndoCounter\' Counter\' dummy = UndoCounter
by (simp-all add: cls-def)

Selection of the field name.

definition att:: CAttId => AttId where
att cf = (case cf of
 CounterImpl\' CounterImpl\' value => CounterImpl\' value
| UndoCounter\' CounterImpl\' value => CounterImpl\' value
| UndoCounter\' UndoCounter\' save => UndoCounter\' save
| CounterImpl\' Counter\' dummy => Counter\' dummy
| UndoCounter\' Counter\' dummy => Counter\' dummy
)

lemma att-simps [simp]:
att CounterImpl\' CounterImpl\' value = CounterImpl\' value
att UndoCounter\' CounterImpl\' value = CounterImpl\' value
att UndoCounter\' UndoCounter\' save = UndoCounter\' save
att CounterImpl\' Counter\' dummy = Counter\' dummy
att UndoCounter\' Counter\' dummy = Counter\' dummy
by (simp-all add: att-def)

end
The following lemmas validate the functions defined in the Attributes theory. They also aid in subsequent proving tasks. Since they are program-independent, it is of no use to add them to the generation process of Attributes.thy. Therefore, they have been extracted to this theory.

Lemma cls-catt [simp]:
\[
\text{CClassT } c \leq \text{ dtype } f \Rightarrow \text{ cls } (\text{ catt } c \ f) = c
\]
apply (case-tac c)
apply (case-tac ![f])
simp-all
— solves all goals where \(\text{CClassT } c \leq \text{ dtype } f \)
apply (fastforce elim: subtype-wrong-elims simp add: subtype-defs)+
— solves all the rest where \(\neg \text{CClassT } c \leq \text{ dtype } f \) can be derived
done

Lemma att-catt [simp]:
\[
\text{CClassT } c \leq \text{ dtype } f \Rightarrow \text{ att } (\text{ catt } c \ f) = f
\]
apply (case-tac c)
apply (case-tac ![f])
simp-all
— solves all goals where \(\text{CClassT } c \leq \text{ dtype } f \)
apply (fastforce elim: subtype-wrong-elims simp add: subtype-defs)+
— solves all the rest where \(\neg \text{CClassT } c \leq \text{ dtype } f \) can be derived
done

The following lemmas are just a demonstration of simplification.

Lemma rtype-att-catt:
\[
\text{CClassT } c \leq \text{ dtype } f \Rightarrow \text{ rtype } (\text{ att } (\text{ catt } c \ f)) = \text{ rtype } f
\]
by simp

Lemma widen-cls-dtype-att [simp,intro]:
\[
(\text{CClassT } (\text{ cls } \ cf) \leq \text{ dtype } (\text{ att } \ cf))
\]
by (cases cf, simp-all)

end

10 Value

theory Value **imports** Subtype **begin**

This theory contains our model of the values in the store. The store is untyped, therefore all types that exist in Java are wrapped into one type Value.

In a first approach, the primitive Java types supported in this formalization are mapped to similar Isabelle types. Later, we will have proper formalizations of the Java types in Isabelle, which will then be used here.

type-synonym JavaInt = int
type-synonym JavaShort = int
type-synonym JavaByte = int
type-synonym JavaBoolean = bool

The objects of each class are identified by a unique ID. We use elements of type nat here, but in general it is sufficient to use an infinite type with a successor function and a comparison predicate.
type-synonym `ObjectId = nat`

The definition of the datatype `Value`. Values can be of the Java types boolean, int, short and byte. Additionally, they can be an object reference, an array reference or the value null.

datatype `Value = boolV JavaBoolean | intgV JavaInt | shortV JavaShort | byteV JavaByte | objV CTypeId ObjectId — typed object reference | arrV Arraytype ObjectId — typed array reference | nullV`

Arrays are modeled as references just like objects. So they can be viewed as special kinds of objects, like in Java.

10.1 Discriminator Functions

To test values, we define the following discriminator functions.

definition `isBoolV :: Value ⇒ bool where`
`isBoolV v = (case v of
 boolV b ⇒ True
 | intgV i ⇒ False
 | shortV s ⇒ False
 | byteV by ⇒ False
 | objV C a ⇒ False
 | arrV T a ⇒ False
 | nullV ⇒ False)`

lemma `isBoolV-simps [simp]`:
`isBoolV (boolV b) = True
isBoolV (intgV i) = False
isBoolV (shortV s) = False
isBoolV (byteV by) = False
isBoolV (objV C a) = False
isBoolV (arrV T a) = False
isBoolV (nullV) = False`

by `simp-all add: isBoolV-def`

definition `isIntgV :: Value ⇒ bool where`
`isIntgV v = (case v of
 boolV b ⇒ False
 | intgV i ⇒ True
 | shortV s ⇒ False
 | byteV by ⇒ False
 | objV C a ⇒ False
 | arrV T a ⇒ False
 | nullV ⇒ False)`

lemma `isIntgV-simps [simp]`:
`isIntgV (boolV b) = False
isIntgV (intgV i) = True
isIntgV (shortV s) = False`
10.1 Discriminator Functions

\[\text{isIntgV (byteV by)} = \text{False} \]
\[\text{isIntgV (objV C a)} = \text{False} \]
\[\text{isIntgV (arrV T a)} = \text{False} \]
\[\text{isIntgV (nullV)} = \text{False} \]
\text{by (simp-all add: isIntgV-def)}

definition \text{isShortV :: Value ⇒ bool where}

\[\text{isShortV v} = (\text{case v of)} \]
\[\text{boolV b ⇒ False} \]
\[| \text{intgV i ⇒ False} \]
\[| \text{shortV s ⇒ True} \]
\[| \text{byteV by ⇒ False} \]
\[| \text{objV C a ⇒ False} \]
\[| \text{arrV T a ⇒ False} \]
\[| \text{nullV ⇒ False} \]

lemma \text{isShortV-simps [simp]:}

\[\text{isShortV (boolV b)} = \text{False} \]
\[\text{isShortV (intgV i)} = \text{False} \]
\[\text{isShortV (shortV s)} = \text{True} \]
\[\text{isShortV (byteV by)} = \text{False} \]
\[\text{isShortV (objV C a)} = \text{False} \]
\[\text{isShortV (arrV T a)} = \text{False} \]
\[\text{isShortV (nullV)} = \text{False} \]
\text{by (simp-all add: isShortV-def)}

definition \text{isByteV :: Value ⇒ bool where}

\[\text{isByteV v} = (\text{case v of)} \]
\[\text{boolV b ⇒ False} \]
\[| \text{intgV i ⇒ False} \]
\[| \text{shortV s ⇒ False} \]
\[| \text{byteV by ⇒ True} \]
\[| \text{objV C a ⇒ False} \]
\[| \text{arrV T a ⇒ False} \]
\[| \text{nullV ⇒ False} \]

lemma \text{isByteV-simps [simp]:}

\[\text{isByteV (boolV b)} = \text{False} \]
\[\text{isByteV (intgV i)} = \text{False} \]
\[\text{isByteV (shortV s)} = \text{False} \]
\[\text{isByteV (byteV by)} = \text{True} \]
\[\text{isByteV (objV C a)} = \text{False} \]
\[\text{isByteV (arrV T a)} = \text{False} \]
\[\text{isByteV (nullV)} = \text{False} \]
\text{by (simp-all add: isByteV-def)}

definition \text{isRefV :: Value ⇒ bool where}

\[\text{isRefV v} = (\text{case v of)} \]
\[\text{boolV b ⇒ False} \]
\[| \text{intgV i ⇒ False} \]
\[| \text{shortV s ⇒ False} \]
lemma isRefV-simps [simp]:
isRefV (boolV b) = False
isRefV (intgV i) = False
isRefV (shortV s) = False
isRefV (byteV by) = False
isRefV (objV C a) = True
isRefV (arrV T a) = True
isRefV (nullV) = True
by (simp-all add: isRefV-def)

definition isObjV :: Value ⇒ bool where
isObjV v = (case v of
 boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ True
| arrV T a ⇒ False
| nullV ⇒ False)

lemma isObjV-simps [simp]:
isObjV (boolV b) = False
isObjV (intgV i) = False
isObjV (shortV s) = False
isObjV (byteV by) = False
isObjV (objV C a) = True
isObjV (arrV T a) = False
isObjV nullV = False
by (simp-all add: isObjV-def)

definition isArrV :: Value ⇒ bool where
isArrV v = (case v of
 boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ False
| arrV T a ⇒ True
| nullV ⇒ False)

lemma isArrV-simps [simp]:
isArrV (boolV b) = False
isArrV (intgV i) = False
isArrV (shortV s) = False
isArrV (byteV by) = False
isArrV (objV C a) = False
isArrV (arrV T a) = True
10.2 Selector Functions

definition `isNullV :: Value ⇒ bool` where

\[
isNullV v = (\text{case } v \text{ of }\\
\text{ boolV } b \Rightarrow \text{False} \\
\text{ intgV } i \Rightarrow \text{False} \\
\text{ shortV } s \Rightarrow \text{False} \\
\text{ byteV } by \Rightarrow \text{False} \\
\text{ objV } C a \Rightarrow \text{False} \\
\text{ arrV } T a \Rightarrow \text{False} \\
\text{ nullV } \Rightarrow \text{True})
\]

lemma `isNullV-simps [simp]`:

\[
isNullV (\text{boolV } b) = \text{False} \\
isNullV (\text{intgV } i) = \text{False} \\
isNullV (\text{shortV } s) = \text{False} \\
isNullV (\text{byteV } by) = \text{False} \\
isNullV (\text{objV } C a) = \text{False} \\
isNullV (\text{arrV } T a) = \text{False} \\
isNullV \text{nullV } = \text{True}
\]

by (simp-all add: `isNullV-def`)

definition `aI :: Value ⇒ JavaInt` where

\[
aI v = (\text{case } v \text{ of }\\
\text{ boolV } b \Rightarrow \text{undefined} \\
\text{ intgV } i \Rightarrow i \\
\text{ shortV } sh \Rightarrow \text{undefined} \\
\text{ byteV } by \Rightarrow \text{undefined} \\
\text{ objV } C a \Rightarrow \text{undefined} \\
\text{ arrV } T a \Rightarrow \text{undefined} \\
\text{ nullV } \Rightarrow \text{undefined})
\]

lemma `aI-simps [simp]`:

\[
aI (\text{intgV } i) = i
\]

by (simp add: `aI-def`)

definition `aB :: Value ⇒ JavaBoolean` where

\[
aB v = (\text{case } v \text{ of }\\
\text{ boolV } b \Rightarrow b \\
\text{ intgV } i \Rightarrow \text{undefined} \\
\text{ shortV } sh \Rightarrow \text{undefined} \\
\text{ byteV } by \Rightarrow \text{undefined} \\
\text{ objV } C a \Rightarrow \text{undefined} \\
\text{ arrV } T a \Rightarrow \text{undefined} \\
\text{ nullV } \Rightarrow \text{undefined})
\]

lemma `aB-simps [simp]`:

\[
aB (\text{boolV } b) = b
\]

by (simp add: `aB-def`)
definition \textit{aSh} :: \textit{Value} \Rightarrow \textit{JavaShort} where
\begin{align*}
\textit{aSh} \; v &= \begin{cases}
\text{undefined} & \text{if } v = \text{boolV} \; b \\
\text{undefined} & \text{if } v = \text{intgV} \; i \\
\text{sh} & \text{if } v = \text{shortV} \; sh \\
\text{undefined} & \text{if } v = \text{byteV} \; by \\
\text{undefined} & \text{if } v = \text{objV} \; C \; a \\
\text{undefined} & \text{if } v = \text{arrV} \; T \; a \\
\text{undefined} & \text{if } v = \text{nullV}
\end{cases}
\end{align*}

lemma \textit{aSh-simps} [simp]:
\begin{align*}
\textit{aSh} \; (\text{shortV} \; sh) &= sh \\
\text{by} \; (\text{simp add: aSh-def})
\end{align*}

definition \textit{aBy} :: \textit{Value} \Rightarrow \textit{JavaByte} where
\begin{align*}
\textit{aBy} \; v &= \begin{cases}
\text{undefined} & \text{if } v = \text{boolV} \; b \\
\text{undefined} & \text{if } v = \text{intgV} \; i \\
\text{undefined} & \text{if } v = \text{shortV} \; s \\
by & \text{if } v = \text{byteV} \; by \\
\text{undefined} & \text{if } v = \text{objV} \; C \; a \\
\text{undefined} & \text{if } v = \text{arrV} \; T \; a \\
\text{undefined} & \text{if } v = \text{nullV}
\end{cases}
\end{align*}

lemma \textit{aBy-simps} [simp]:
\begin{align*}
\textit{aBy} \; (\text{byteV} \; by) &= by \\
\text{by} \; (\text{simp add: aBy-def})
\end{align*}

definition \textit{tid} :: \textit{Value} \Rightarrow \textit{CTypeId} where
\begin{align*}
\textit{tid} \; v &= \begin{cases}
\text{undefined} & \text{if } v = \text{boolV} \; b \\
\text{undefined} & \text{if } v = \text{intgV} \; i \\
\text{undefined} & \text{if } v = \text{shortV} \; s \\
\text{undefined} & \text{if } v = \text{byteV} \; by \\
\text{C} & \text{if } v = \text{objV} \; C \; a \\
\text{undefined} & \text{if } v = \text{arrV} \; T \; a \\
\text{undefined} & \text{if } v = \text{nullV}
\end{cases}
\end{align*}

lemma \textit{tid-simps} [simp]:
\begin{align*}
\textit{tid} \; (\text{objV} \; C \; a) &= C \\
\text{by} \; (\text{simp add: tid-def})
\end{align*}

definition \textit{oid} :: \textit{Value} \Rightarrow \textit{ObjectId} where
\begin{align*}
\textit{oid} \; v &= \begin{cases}
\text{undefined} & \text{if } v = \text{boolV} \; b \\
\text{undefined} & \text{if } v = \text{intgV} \; i \\
\text{undefined} & \text{if } v = \text{shortV} \; s \\
\text{undefined} & \text{if } v = \text{byteV} \; by \\
\text{a} & \text{if } v = \text{objV} \; C \; a \\
\text{undefined} & \text{if } v = \text{arrV} \; T \; a \\
\text{undefined} & \text{if } v = \text{nullV}
\end{cases}
\end{align*}

lemma \textit{oid-simps} [simp]:
oid (objV C a) = a
by (simp add: oid-def)

Definition

\[\text{jt} :: \text{Value} \Rightarrow \text{Javatype} \]

\[\text{jt} v = \begin{cases} \text{boolV} \ b \Rightarrow \text{undefined} \\ \text{intgV} \ i \Rightarrow \text{undefined} \\ \text{shortV} \ s \Rightarrow \text{undefined} \\ \text{byteV} \ by \Rightarrow \text{undefined} \\ \text{objV} \ C \ a \Rightarrow \text{undefined} \\ \text{arrV} \ T \ a \Rightarrow \text{at2jt} \ T \\ \text{nullV} \Rightarrow \text{undefined} \end{cases} \]

Lemma

\[\text{jt-simps} \ [\text{simp}]: \]

\[\text{jt} (\text{arrV} \ T \ a) = \text{at2jt} \ T \]

by (simp add: jt-def)

Definition

\[\text{aid} :: \text{Value} \Rightarrow \text{ObjectId} \]

\[\text{aid} v = \begin{cases} \text{boolV} \ b \Rightarrow \text{undefined} \\ \text{intgV} \ i \Rightarrow \text{undefined} \\ \text{shortV} \ s \Rightarrow \text{undefined} \\ \text{byteV} \ by \Rightarrow \text{undefined} \\ \text{objV} \ C \ a \Rightarrow \text{undefined} \\ \text{arrV} \ T \ a \Rightarrow a \\ \text{nullV} \Rightarrow \text{undefined} \end{cases} \]

Lemma

\[\text{aid-simps} \ [\text{simp}]: \]

\[\text{aid} (\text{arrV} \ T \ a) = a \]

by (simp add: aid-def)

10.3 Determining the Type of a Value

To determine the type of a value, we define the function `typeof`. This function is often written as \(\tau \) in theoretical texts, therefore we add the appropriate syntax support.

Definition

\[\text{typeof} :: \text{Value} \Rightarrow \text{Javatype} \]

\[\text{typeof} v = \begin{cases} \text{boolV} \ b \Rightarrow \text{BoolT} \\ \text{intgV} \ i \Rightarrow \text{IntgT} \\ \text{shortV} \ s \Rightarrow \text{ShortT} \\ \text{byteV} \ by \Rightarrow \text{ByteT} \\ \text{objV} \ C \ a \Rightarrow \text{CClassT} \ C \\ \text{arrV} \ T \ a \Rightarrow \text{ArrT} \ T \\ \text{nullV} \Rightarrow \text{NullT} \end{cases} \]

Abbreviation

\[\text{tau-syntax} :: \text{Value} \Rightarrow \text{Javatype} (\tau -) \]

\[\tau \ v = \text{typeof} \ v \]

Lemma

\[\text{typeof-simps} \ [\text{simp}]: \]

\[(\tau (\text{boolV} \ b)) = \text{BoolT} \]

\[(\tau (\text{intgV} \ i)) = \text{IntgT} \]
\(\tau (\text{shortV sh}) = \text{ShortT} \)
\(\tau (\text{byteV by}) = \text{ByteT} \)
\(\tau (\text{objV c a}) = \text{CClassT c} \)
\(\tau (\text{arrV t a}) = \text{ArrT t} \)
\(\tau (\text{nullV}) = \text{NullT} \)

by \((\text{simp-all add: typeof-def})\)

10.4 Default Initialization Values for Types

The function \(\text{init} \) yields the default initialization values for each type. For boolean, the default value is \(\text{False} \), for the integral types, it is \(0 \), and for the reference types, it is \(\text{nullV} \).

definition \(\text{init} :: \text{Javatype} \Rightarrow \text{Value} \)

\(\text{init T} = (\text{case T of} \)
\(\quad \text{BoolT} \Rightarrow \text{boolV False} \)
\(\quad \text{IntgT} \Rightarrow \text{intgV 0} \)
\(\quad \text{ShortT} \Rightarrow \text{shortV 0} \)
\(\quad \text{ByteT} \Rightarrow \text{byteV 0} \)
\(\quad \text{NullT} \Rightarrow \text{nullV} \)
\(\quad \text{ArrT T} \Rightarrow \text{nullV} \)
\(\quad \text{CClassT c} \Rightarrow \text{nullV} \)
\(\quad \text{AClassT a} \Rightarrow \text{nullV} \)
\(\quad \text{InterfaceT I} \Rightarrow \text{nullV} \)

\(\text{lemma} \ \text{init-simps} \ [\text{simp}]: \)
\(\text{init BoolT} \quad = \text{boolV False} \)
\(\text{init IntgT} \quad = \text{intgV 0} \)
\(\text{init ShortT} \quad = \text{shortV 0} \)
\(\text{init ByteT} \quad = \text{byteV 0} \)
\(\text{init NullT} \quad = \text{nullV} \)
\(\text{init (ArrT T)} \quad = \text{nullV} \)
\(\text{init (CClassT c)} \quad = \text{nullV} \)
\(\text{init (AClassT a)} \quad = \text{nullV} \)
\(\text{init (InterfaceT i)} \quad = \text{nullV} \)

by \((\text{simp-all add: init-def})\)

lemma \(\text{typeof-init-widen} \ [\text{simp,intro}]: \text{typeof} \ (\text{init T}) \leq T \)

proof \((\text{cases T})\)
\(\text{assume c: T = BoolT} \)
\(\text{show} \ (\tau (\text{init T})) \leq T \)
\(\quad \text{using c by simp} \)
\(\text{next} \)
\(\text{assume c: T = IntgT} \)
\(\text{show} \ (\tau (\text{init T})) \leq T \)
\(\quad \text{using c by simp} \)
\(\text{next} \)
\(\text{assume c: T = ShortT} \)
\(\text{show} \ (\tau (\text{init T})) \leq T \)
\(\quad \text{using c by simp} \)
\(\text{next} \)
\(\text{assume c: T = ByteT} \)
\(\text{show} \ (\tau (\text{init T})) \leq T \)
\(\quad \text{using c by simp} \)
\(\text{next} \)
assume \(c: T = \text{NullT} \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \) by simp

next
fix \(x \)
assume \(c: T = \text{CClassT} \ x \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \) by (cases \(x \), simp-all)

next
fix \(y \)
assume \(c2: x = \text{CClassAT} \ y \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by (cases \(y \), simp-all)

next
fix \(y \)
assume \(c2: x = \text{AClassAT} \ y \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by (cases \(y \), simp-all)

next
fix \(y \)
assume \(c2: x = \text{InterfaceAT} \ y \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by (cases \(y \), simp-all)

next
fix \(y \)
assume \(c2: x = \text{BoolAT} \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by simp

next
assume \(c2: x = \text{IntgAT} \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by simp

next
assume \(c2: x = \text{ShortAT} \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by simp

next
assume \(c2: x = \text{ByteAT} \)
show \((\tau (\text{init } T)) \leq T\)
 using \(c \ c2 \) by simp
A storage location can be a field of an object, a static field, the length of an array, or the contents of an array.

datatype Location = objLoc CAttId ObjectId — field in object
 | staticLoc AttId — static field in concrete class
 | arrLenLoc Arraytype ObjectId — length of an array
 | arrLoc Arraytype ObjectId nat — contents of an array

We only directly support one-dimensional arrays. Multidimensional arrays can be simulated by arrays of references to arrays.

The function \texttt{ltype} yields the content type of a location.

definition ltype:: Location \Rightarrow Javatype where
ltype \ l = (case \ l \ of
 objLoc \ cf \ a \Rightarrow \ rtype \ (att \ cf)
 | staticLoc \ f \Rightarrow \ rtype \ f
 | arrLenLoc \ T \ a \Rightarrow \ IntgT
 | arrLoc \ T \ a \ i \Rightarrow \ at2jt \ T)

lemma ltype-simps [simp]:
ltype (objLoc \ cf \ a) = rtype (att \ cf)
ltype (staticLoc \ f) = rtype \ f
ltype (arrLenLoc \ T \ a) = IntgT
ltype (arrLoc \ T \ a \ i) = at2jt \ T
by (simp-all add: ltype-def)

Discriminator functions to test whether a location denotes an array length or whether it denotes a static object. Currently, the discriminator functions for object and array locations are not specified. They can be added if they are needed.

definition isArrLenLoc:: Location \Rightarrow bool where
isArrLenLoc \ l \ = (case \ l \ of
 objLoc \ cf \ a \Rightarrow \ False
 | staticLoc \ f \Rightarrow \ False
 | arrLenLoc \ T \ a \Rightarrow \ True
 | arrLoc \ T \ a \ i \Rightarrow \ False)

lemma isArrLenLoc-simps [simp]:
isArrLenLoc (objLoc \ cf \ a) = False
isArrLenLoc (staticLoc \ f) = False
isArrLenLoc (arrLenLoc \ T \ a) = True
isArrLenLoc (arrLoc \ T \ a \ i) = False
by (simp-all add: isArrLenLoc-def)
definition isStaticLocation :: Location ⇒ bool where
isStaticLocation l = (case l of
 objLoc cf f a ⇒ False
| staticLoc f ⇒ True
| arrLenLoc T a ⇒ False
| arrLoc T a i ⇒ False)

lemma isStaticLocation-simps [simp]:
isStaticLocation (objLoc cf f a) = False
isStaticLocation (staticLoc f) = True
isStaticLocation (arrLenLoc T a) = False
isStaticLocation (arrLoc T a i) = False
 by (simp-all add: isStaticLocation-def)

The function ref yields the object or array containing the location that is passed as argument
(see the function obj in [PH97, p. 43 f.]). Note that for static locations the result is nullV since
static locations are not associated to any object.

definition ref :: Location ⇒ Value where
ref l = (case l of
 objLoc cf f a ⇒ objV (cls cf) a
| staticLoc f ⇒ nullV
| arrLenLoc T a ⇒ arrV T a
| arrLoc T a i ⇒ arrV T a)

lemma ref-simps [simp]:
ref (objLoc cf f a) = objV (cls cf) a
ref (staticLoc f) = nullV
ref (arrLenLoc T a) = arrV T a
ref (arrLoc T a i) = arrV T a
 by (simp-all add: ref-def)

The function loc denotes the subscription of an object reference with an attribute.

primrec loc :: Value ⇒ AttId ⇒ Location (...) [80,80] 80
where
loc (objV c f a) f = objLoc (cat c f) a

Note that we only define subscription properly for object references. For all other values we do
not provide any defining equation, so they will internally be mapped to arbitrary.

The length of an array can be selected with the function arr-len.

primrec arr-len :: Value ⇒ Location (...) [80,80] 80
where
arr-len (arrV T a) = arrLenLoc T a

Arrays can be indexed by the function arr-loc.

primrec arr-loc :: Value ⇒ nat ⇒ Location (...) [80,80] 80
where
arr-loc (arrV T a) i = arrLoc T a i

The functions loc, arr-len and arr-loc define the interface between the basic store model (based
on locations) and the programming language Java. Instance field access obj.x is modelled as
obj.x or loc obj x (without the syntactic sugar), array length a.length with arr-len a, array
indexing a[i] with a.[i] or arr-loc a i. The accessing of a static field C.f can be expressed by
the location itself staticLoc C.f. Of course one can build more infrastructure to make access
to instance fields and static fields more uniform. We could for example define a function static
which indicates whether a field is static or not and based on that create an objLoc location or a staticLoc location. But this will only complicate the actual proofs and we can already easily perform the distinction whether a field is static or not in the JIVE-frontend and therefore keep the verification simpler.

\begin{itemize}
\item \textbf{lemma} \texttt{ref-loc [simp]}: \texttt{[isObjV r; typeof r \leq dtype f]} \implies \texttt{ref (r..f) = r}
\item \texttt{apply (case-tac r)}
\item \texttt{apply (case-tac \[\|\ f\) for (simp-all)}
\item \texttt{done}
\end{itemize}

\begin{itemize}
\item \textbf{lemma} \texttt{obj-arr-loc [simp]}: \texttt{isArrV r} \implies \texttt{ref (r.[i]) = r}
\item \texttt{by (cases r) simp-all}
\end{itemize}

\begin{itemize}
\item \textbf{lemma} \texttt{obj-arr-len [simp]}: \texttt{isArrV r} \implies \texttt{ref (arr-len r) = r}
\item \texttt{by (cases r) simp-all}
\end{itemize}

\texttt{end}

\section{12 Store}

\texttt{theory Store}

\texttt{imports Location}

\begin{itemize}
\item \texttt{begin}
\end{itemize}

\subsection{12.1 New}

The store provides a uniform interface to allocate new objects and new arrays. The constructors of this datatype distinguish both cases.

\begin{itemize}
\item \textbf{datatype} \texttt{New = new-instance CTypeId} — New object, can only be of a concrete class type
\item \texttt{| new-array Arraytype nat} — New array with given size
\end{itemize}

The discriminator \texttt{isNewArr} can be used to distinguish both kinds of newly created elements.

\begin{itemize}
\item \textbf{definition} \texttt{isNewArr :: New \Rightarrow bool where}
\item \texttt{isNewArr t = (case t of}
\item \texttt{new-instance C \Rightarrow False}
\item \texttt{| new-array T l \Rightarrow True)}
\end{itemize}

\begin{itemize}
\item \textbf{lemma} \texttt{isNewArr-simps [simp]}:
\item \texttt{isNewArr (new-instance C) = False}
\item \texttt{isNewArr (new-array T l) = True}
\item \texttt{by (simp-all add: isNewArr-def)}
\end{itemize}

The function \texttt{typeofNew} yields the type of the newly created element.

\begin{itemize}
\item \textbf{definition} \texttt{typeofNew :: New \Rightarrow Javatype where}
\item \texttt{typeofNew n = (case n of}
\item \texttt{new-instance C \Rightarrow CClassT C}
\item \texttt{| new-array T l \Rightarrow ArrT T)}
\end{itemize}

\begin{itemize}
\item \textbf{lemma} \texttt{typeofNew-simps}:
\item \texttt{typeofNew (new-instance C) = CClassT C}
\item \texttt{typeofNew (new-array T l) = ArrT T}
\item \texttt{by (simp-all add: typeofNew-def)}
\end{itemize}
12.2 The Definition of the Store

In our store model, all objects\(^2\) of all classes exist at all times, but only those objects that have already been allocated are alive. Objects cannot be deallocated, thus an object that once gained the aliveness status cannot lose it later on.

To model the store, we need two functions that give us fresh object Id’s for the allocation of new objects (function \(\text{newOID}\)) and arrays (function \(\text{newAID}\)) as well as a function that maps locations to their contents (function \(\text{vals}\)).

\[
\text{record } \text{StoreImpl} = \text{newOID} ::
\begin{array}{l}
\text{CTypeId} \Rightarrow \text{ObjectId} \\
\text{newAID} :: \text{Arraytype} \Rightarrow \text{ObjectId} \\
\text{vals} :: \text{Location} \Rightarrow \text{Value}
\end{array}
\]

The function \(\text{aliveImpl}\) determines for a given value whether it is alive in a given store.

\[
\text{definition } \text{aliveImpl} :: \text{Value} \Rightarrow \text{StoreImpl} \Rightarrow \text{bool}
\]

\[
\text{aliveImpl } x \ s = \begin{cases}
\text{bool} \ v \ b & \Rightarrow \text{True} \\
\text{int} \ v \ i & \Rightarrow \text{True} \\
\text{short} \ v \ s & \Rightarrow \text{True} \\
\text{byte} \ v \ by & \Rightarrow \text{True} \\
\text{obj} \ C \ a & \Rightarrow (a < \text{newOID } s \ C) \\
\text{arr} \ T \ a & \Rightarrow (a < \text{newAID } s \ T) \\
\text{null} & \Rightarrow \text{True}
\end{cases}
\]

The store itself is defined as new type. The store ensures and maintains the following properties: All stored values are alive; for all locations whose values are not alive, the store yields the location type’s init value; and all stored values are of the correct type (i.e. of the type of the location they are stored in).

\[
\text{definition } \text{Store} = \{ \forall \ l. \ \text{aliveImpl} (\text{vals } s \ l) \ s \} \land \\
(\forall \ l. \ \neg \ \text{aliveImpl} (\text{ref } l) \ s \rightarrow \text{vals } s \ l = \text{init } (\text{ltype } l)) \land \\
(\forall \ l. \ \text{typeof } (\text{vals } s \ l) \leq \text{ltype } l)\}
\]

\[
\text{typedef } \text{Store} = \text{Store}
\]

\[
\text{unfolding } \text{Store-def}
\]

\[
\text{apply } (\text{rule exI} \ [\text{where } ?x=\{ \text{newOID} = (\lambda C. \ 0), \\
\text{newAID} = (\lambda T. \ 0), \\
\text{vals} = (\lambda l. \ \text{init } (\text{ltype } l)) \}])
\]

\[
\text{apply } (\text{auto simp add: } \text{aliveImpl-def } \text{init-def } \text{NullT-leaf-array } \text{split: } \text{Javatype.splits})
\]

\text{done}

One might also model the Store as axiomatic type class and prove that the type \(\text{StoreImpl}\) belongs to this type class. This way, a clearer separation between the axiomatic description of the store and its properties on the one hand and the realization that has been chosen in this formalization on the other hand could be achieved. Additionally, it would be easier to make use of different store implementations that might have different additional features. This separation remains to be performed as future work.

\(^2\)In the following, the term “objects” includes arrays. This keeps the explanations compact.
12.3 The Store Interface

The Store interface consists of five functions: *access* to read the value that is stored at a location; *alive* to test whether a value is alive in the store; *alloc* to allocate a new element in the store; *new* to read the value of a newly allocated element; *update* to change the value that is stored at a location.

consts

\[
\text{access} :: \text{Store} \Rightarrow \text{Location} \Rightarrow \text{Value} \\
\text{alive} :: \text{Value} \Rightarrow \text{Store} \Rightarrow \text{bool} \\
\text{alloc} :: \text{Store} \Rightarrow \text{New} \Rightarrow \text{Store} \\
\text{new} :: \text{Store} \Rightarrow \text{New} \Rightarrow \text{Value} \\
\text{update} :: \text{Store} \Rightarrow \text{Location} \Rightarrow \text{Value} \Rightarrow \text{Store}
\]

nonterminal smodifybinds and smodifybind

syntax

\[
\text{-smodifybind} :: \text{CType} = \Rightarrow \text{smodifybind} ((\text{CType} = / -)) \\
\text{:: smodifybind} \Rightarrow \text{smodifybinds} (-) \\
\text::- CTypeId \Rightarrow \text{smodifybind} (-) \\
\text{-smodifybinds} :: \text{smodifybind, smodifybinds} = \Rightarrow \text{smodifybinds} (-, / -) \\
\text{-sModify} :: \text{[a, smodifybinds]} = \Rightarrow \text{a} (-/(\text{-})) [900,0] 900
\]

translations

\[
\text{-sModify s (-smodifybinds b bs} == \text{-sModify (-sModify s b) bs} \\
\text{s(x:=y)} == \text{CONST update s x y} \\
\text{s(c)} == \text{CONST alloc s c}
\]

With this syntactic setup we can write chains of (array) updates and allocations like in the following term \(s\langle\text{new-instance Node, x} := y, z := \text{intgV 3, new-array IntgAT 3, a[i]} := \text{intgV 4, k} := \text{boolV True}\rangle\).

In the following, the definitions of the five store interface functions and some lemmas about them are given.

defs alive-def:

\[
\text{alive} x s \equiv \text{aliveImpl} x \ (\text{Rep-Store} s)
\]

lemma alive-trivial-simps [simp,intro]:

\[
\text{alive} (\text{boolV} b) s \\
\text{alive} (\text{intgV} i) s \\
\text{alive} (\text{shortV} sh) s \\
\text{alive} (\text{byteV} by) s \\
\text{alive nullV} s \\
\text{by} (\text{simp-all add: alive-def aliveImpl-def})
\]

defs access-def:

\[
\text{access} s l \equiv \text{vals} \ (\text{Rep-Store} s) \ l
\]

defs update-def:

\[
\text{update} s l v \equiv \text{if alive} \ (\text{ref} l) s \land \text{alive} v \ s \land \text{typeof} v \leq \text{ltype} l \\
\text{then Abs-Store} ((\text{Rep-Store} s)[\text{vals} := (\text{vals} \ (\text{Rep-Store} s))(l := v)]) \\
\text{else} s
\]

defs alloc-def:

\[
\text{alloc} s t \equiv \\
\text{(case} t \text{of} \\
\text{new-instance} C
\]
12.4 Derived Properties of the Store

In this subsection, a number of lemmas formalize various properties of the Store. Especially the 13 axioms are proven that must hold for a modelling of a Store (see [PH97, p. 45]). They are labeled with Store1 to Store13.

Lemma alive-init [simp, intro]: alive (init T) s
by (cases T) (simp-all add: alive-def aliveImpl-def)

Lemma alive-loc [simp]:
\[\text{isObjV} \; x \land \text{typeof} \; x \leq \text{dtype} \; f \implies \text{alive} \; (\text{ref} \; (x .. f)) \; s = \text{alive} \; x \; s \]
by (cases x) (simp-all)

Lemma alive-arr-loc [simp]:
\[\text{isArrV} \; x \implies \text{alive} \; (\text{ref} \; (x . [i])) \; s = \text{alive} \; x \; s \]
by (cases x) (simp-all)

Lemma alive-arr-len [simp]:
\[\text{isArrV} \; x \implies \text{alive} \; (\text{ref} \; (\text{arr-len} \; x)) \; s = \text{alive} \; x \; s \]
by (cases x) (simp-all)

Lemma ref-arr-len-new [simp]:
\[\text{ref} \; (\text{arr-len} \; (\text{new} \; s \; (\text{new-array} \; T \; n))) = \text{new} \; s \; (\text{new-array} \; T \; n) \]
by (simp add: new-def)

Lemma ref-arr-loc-new [simp]:
\[\text{ref} \; ((\text{new} \; s \; (\text{new-array} \; T \; n)).[i]) = \text{new} \; s \; (\text{new-array} \; T \; n) \]
by (simp add: new-def)

Lemma ref-loc-new [simp]:
\[\text{CClass} \; T \; C \leq \text{dtype} \; f \implies \text{ref} \; ((\text{new} \; s \; (\text{new-instance} \; C)).f) = \text{new} \; s \; (\text{new-instance} \; C) \]

The predicate wts tests whether the store is well-typed.

Definition
\[\text{wts} : \text{Store} \Rightarrow \text{bool} \]
where
\[\text{wts} \; OS = (\forall \; (l :: \text{Location}) . \; \text{typeof} \; (OS @@ l) \leq (\text{dtype} \; l)) \]
by (simp add: new-def)

lemma access-type-safe [simp, intro]: typeof (s@@l) ≤ ltype l
proof –
 have Rep-Store s ∈ Store
 by (rule Rep-Store)
 thus ?thesis
 by (auto simp add: access-def Store-def)
qed

The store is well-typed by construction.

lemma always-welltyped-store: wts OS
 by (simp add: wts-def access-type-safe)

lemma alive-access [simp, intro]: alive (s@@l) s
proof –
 have Rep-Store s ∈ Store
 by (rule Rep-Store)
 thus ?thesis
 by (auto simp add: access-def Store-def alive-def aliveImpl-def)
qed

lemma access-unsafe [simp]:
 assumes unsafe: ¬ alive (ref l) s
 shows s@@l = init (ltype l)
proof –
 have Rep-Store s ∈ Store
 by (rule Rep-Store)
 with unsafe show ?thesis
 by (simp add: access-def Store-def alive-def aliveImpl-def)
qed

lemma update-induct:
 assumes skip: P s
 assumes update: [(alive (ref l) s; alive v s; typeof v ≤ ltype l) ⇒
 P (Abs-Store ((Rep-Store s)(vals:=(vals (Rep-Store s))(l:=v))))]
 shows P (s(l:=v))
using update skip
by (simp add: update-def)

lemma vals-update-in-Store:
 assumes alive-l: alive (ref l) s
 assumes alive-y: alive y s
 assumes type-conform: typeof y ≤ ltype l
 shows (Rep-Store s vals := (vals (Rep-Store s))(l := y)) ∈ Store
 (is ?s-upd ∈ Store)
proof –
 have s: Rep-Store s ∈ Store
 by (rule Rep-Store)
 have alloc-eq: newOID ?s-upd = newOID (Rep-Store s)
by simp
have \(\forall \ l. \ aliveImpl (vals \ ?s-upd \ l) \ ?s-upd \)
proof
 fix \(k \)
 show \(aliveImpl (vals \ ?s-upd \ k) \ ?s-upd \)
 proof (cases \(k=\)l)
 case True
 with alive-y show \(\)thesis
 by (simp add: alloc-eq alive-def aliveImpl-def split: Value.splits)
 next
 case False
 from \(s \) have \(\forall \ l. \ aliveImpl (\underbrace{vals \ (Rep-Store \ s) \ l}) \ (Rep-Store \ s) \)
 by (simp add: Store-def)
 with False show \(\)thesis
 by (simp add: aliveImpl-def split: Value.splits)
 qed
qed

moreover
have \(\forall \ l. \ \neg \ aliveImpl (\underbrace{ref \ l} \ ?s-upd) \ \rightarrow \ vals \ ?s-upd \ l = \ init \ (ltype \ l) \)
proof (intro all1 implI)
 fix \(k \)
 assume unalive: \(\neg \ aliveImpl (\underbrace{ref \ k} \ ?s-upd) \)
 show vals \ ?s-upd \ k = init \ (ltype \ k)
 proof
 from unalive alive-l
 have \(k \neq \)l
 by (auto simp add: alive-def aliveImpl-def split: Value.splits)
 hence vals \ ?s-upd \ k = vals \ (Rep-Store \ s) \ k
 by simp
 moreover from unalive
 have \(\neg \ aliveImpl (\underbrace{ref \ k} \ (Rep-Store \ s)) \)
 by (simp add: aliveImpl-def split: Value.splits)
 ultimately show \(\)thesis
 using \(s \) by (simp add: Store-def)
 qed
qed

moreover
have \(\forall \ l. \ typeof \ (vals \ ?s-upd \ l) \leq \ ltype \ l \)
proof
 fix \(k \) show typeof \ (vals \ ?s-upd \ k) \leq \ ltype \ k
 proof (cases \(k=\)l)
 case True
 with type-conform show \(\)thesis
 by simp
 next
 case False
 hence vals \ ?s-upd \ k = vals \ (Rep-Store \ s) \ k
 by simp
 with \(s \) show \(\)thesis
 by (simp add: Store-def)
 qed
ultimately show \(\)thesis
 by (simp add: Store-def)
proof (rule update-induct)
 show alive x s = alive x s ..
next
 assume alive (ref l) s alive y s typeof y ≤ ltype l
 hence Rep-Store
 (Abs-Store (Rep-Store s(vals := (vals (Rep-Store s))(l := y))))
 = Rep-Store s(vals := (vals (Rep-Store s))(l := y))
 by (rule vals-update-in-Store [THEN Abs-Store-inverse])
 thus alive x
 (Abs-Store (Rep-Store s(vals := (vals (Rep-Store s))(l := y)))) =
 alive x s
 by (simp add: alive-def aliveImpl-def split: Value.split)
qed

lemma access-update-other [simp]:
 assumes neq-l-m: l ≠ m
 shows s(l:=x)@@m = s@@m
proof (rule update-induct)
 show s@@m = s@@m ..
next
 assume alive (ref l) s alive x s typeof x ≤ ltype l
 hence Rep-Store
 (Abs-Store (Rep-Store s(vals := (vals (Rep-Store s))(l := x))))
 = Rep-Store s(vals := (vals (Rep-Store s))(l := x))
 by (rule vals-update-in-Store [THEN Abs-Store-inverse])
 with neq-l-m
 show Abs-Store (Rep-Store s(vals := (vals (Rep-Store s))(l := x))@@m = s@@m
 by (auto simp add: access-def)
qed

lemma update-access-same [simp]:
 assumes alive-l: alive (ref l) s
 assumes alive-x: alive x s
 assumes widen-x-l: typeof x ≤ ltype l
 shows s(l:=x)@@l = x
proof
 from alive-l alive-x widen-x-l
 have Rep-Store
 (Abs-Store (Rep-Store s(vals := (vals (Rep-Store s))(l := x))))
 = Rep-Store s(vals := (vals (Rep-Store s))(l := x))
 by (rule vals-update-in-Store [THEN Abs-Store-inverse])
 hence Abs-Store (Rep-Store s(vals := (vals (Rep-Store s))(l := x))@@l = x
 by (simp add: access-def)
 with alive-l alive-x widen-x-l
 show ?thesis
 by (simp add: update-def)
qed
12.4 Derived Properties of the Store

Store4

lemma update-unalive-val [simp, intro]: \(\neg \text{alive} \ x \ s \Rightarrow s(l:=x) = s \)
 by (simp add: update-def)

lemma update-unalive-loc [simp, intro]: \(\neg \text{alive} \ (\text{ref} \ l) \ s \Rightarrow s(l:=x) = s \)
 by (simp add: update-def)

lemma update-type-mismatch [simp, intro]: \(\neg \text{typeof} \ x \leq \text{ltype} \ l \Rightarrow s(l:=x) = s \)
 by (simp add: update-def)

Store9

lemma alive-primitive [simp, intro]: \(\text{isprimitive} \ (\text{typeof} \ x) = \Rightarrow \text{alive} \ x \ s \)
 by (cases x) (simp-all)

Store10

lemma new-unalive-old-Store [simp]: \(\neg \text{alive} \ (\text{new} \ s \ t) \ s \)
 by (cases l) (simp-all add: alive-def aliveImpl-def new-def)

lemma alloc-new-instance-in-Store:

\[
\text{Rep-Store} \ s[(\text{newOID} := \lambda D. \text{Suc} \ (\text{newOID} (\text{Rep-Store} s) \ C)) \text{ if } C = D \text{ then } \text{newOID} (\text{Rep-Store} s) \ D] \in \text{Store}
\]

(is ?s-alloc \in \text{Store})

proof

- **have** \(s: \text{Rep-Store} \ s \in \text{Store} \)
 - by (rule Rep-Store)
 - **hence** \(\forall l. \text{aliveImpl} (\text{vals} (\text{Rep-Store} s) \ l) (\text{Rep-Store} s) \)
 - by (simp add: Store-def)
 - **then**
 - **have** \(\forall l. \text{aliveImpl} (\text{vals} \ ?s-alloc \ l) \ ?s-alloc \)
 - by (auto intro: less-SucI simp add: aliveImpl-def split: Value.splits)
 - **moreover**
 - **have** \(\forall l. \neg \text{aliveImpl} (\text{ref} \ l) \ ?s-alloc \implies \text{vals} \ ?s-alloc \ l = \text{init} (\text{ltype} \ l) \)
 - proof (intro allI impI)
 - **fix** \(l \)
 - **assume** \(\neg \text{aliveImpl} (\text{ref} \ l) \ ?s-alloc \)
 - **hence** \(\neg \text{aliveImpl} (\text{ref} \ l) \ (\text{Rep-Store} s) \)
 - by (simp add: aliveImpl-def split: Value.splits split-if-asm)
 - **with** \(s \) **have** \(\text{vals} (\text{Rep-Store} s) \ l = \text{init} (\text{ltype} \ l) \)
 - by (simp add: Store-def)
 - **thus** \(\text{vals} \ ?s-alloc \ l = \text{init} (\text{ltype} \ l) \)
 - by simp
 - **qed**
 - **moreover**
 - **from** \(s \) **have** \(\forall l. \text{typeof} \ (\text{vals} \ ?s-alloc \ l) \leq \text{ltype} \ l \)
 - by (simp add: Store-def)
 - **ultimately**
 - **show** \(\text{thesis} \)
 - by (simp add: Store-def)
 - **qed**

lemma alloc-new-array-in-Store:

\[
\text{Rep-Store} \ s[(\text{newAID} := \]
\]
\(\lambda S. \) if \(T = S \)
then Suc (newAID (Rep-Store s) T)
else newAID (Rep-Store s) S,
vals := (vals (Rep-Store s))
(arrLenLoc T
(newAID (Rep-Store s) T) :=
intgV (int n)) | \in Store
(is \(?s\text{-alloc} \in Store \))
proof –
have s: Rep-Store s \in Store
by (rule Rep-Store)
have \(\forall \ l. \) aliveImpl (vals \(?s\text{-alloc} \ l \)) \(?s\text{-alloc} \)
proof
fix \(l \) show aliveImpl (vals \(?s\text{-alloc} \ l \)) \(?s\text{-alloc} \)
proof (cases \(l = \) arrLenLoc T (newAID (Rep-Store s) T))
case True
 thus \text{?thesis}
 by (simp add: aliveImpl-def split: Value.splits)
next
case False
from s have \(\forall \ l. \) aliveImpl (vals (Rep-Store s) l) (Rep-Store s)
by (simp add: Store-def)
with False show \text{?thesis}
by (auto intro: less-SucI simp add: aliveImpl-def split: Value.splits)
qed
qed
moreover
have \(\forall \ l. \) \(\neg \) aliveImpl (ref l) \(?s\text{-alloc} \) \(\rightarrow \) vals \(?s\text{-alloc} \ l \) = init (ltype l)
proof (intro allI impl)
fix \(l \)
assume unalive: \(\neg \) aliveImpl (ref l) \(?s\text{-alloc} \)
show vals \(?s\text{-alloc} \ l \) = init (ltype l)
proof (cases \(l = \) arrLenLoc T (newAID (Rep-Store s) T))
case True
with unalive show \text{?thesis} by (simp add: aliveImpl-def)
next
case False
from unalive
have \(\neg \) aliveImpl (ref l) (Rep-Store s)
 by (simp add: aliveImpl-def split: Value.splits split-if-asm)
with s have vals (Rep-Store s) l = init (ltype l)
 by (simp add: Store-def)
with False show \text{?thesis}
 by simp
qed
qed
moreover
from s have \(\forall \ l. \) typeof (vals \(?s\text{-alloc} \ l \)) \leq ltype l
 by (simp add: Store-def)
ultimately
show \text{?thesis}
 by (simp add: Store-def)
qed
lemma new-alive-alloc [simp,intro]: alive (new s t) (s(t))
proof (cases t)
 case new-instance thus ?thesis
 by (simp add: alive-def aliveImpl-def new-def alloc-def
 alloc-new-instance-in-Store [THEN Abs-Store-inverse])
next
 case new-array thus ?thesis
 by (simp add: alive-def aliveImpl-def new-def alloc-def
 alloc-new-array-in-Store [THEN Abs-Store-inverse])
qed

lemma value-class-inhabitants:
(∀ x. typeof x = CClassT typeId −→ P x) = (∀ a. P (objV typeId a))
(is (∀ x. ?A x) = ?B)
proof
 assume ∀ x. ?A x thus ?B
 by simp
next
 assume B: ?B show ∀ x. ?A x
 proof
 fix x from B show ?A x
 by (cases x) auto
 qed
 qed

lemma value-array-inhabitants:
(∀ x. typeof x = ArrT typeId −→ P x) = (∀ a. P (arrV typeId a))
(is (∀ x. ?A x) = ?B)
proof
 assume ∀ x. ?A x thus ?B
 by simp
next
 assume B: ?B show ∀ x. ?A x
 proof
 fix x from B show ?A x
 by (cases x) auto
 qed
 qed

The following three lemmas are helper lemmas that are not related to the store theory. They
might as well be stored in a separate helper theory.

lemma le-Suc-eq: (∀ a. (a < Suc n) = (a < Suc m)) = (∀ a. (a < n) = (a < m))
(is (∀ a. ?A a) = (∀ a. ?B a))
proof
 assume ∀ a. ?A a thus ∀ a. ?B a
 by fastforce
next
 assume B: ∀ a. ?B a
 show ∀ a. ?A a
 proof
 fix a
 from B show ?A a
 by (cases a) simp-all
lemma all-le-eq-imp-eq: \(\forall c :: \text{nat}. (a < d) = (a < c) \rightarrow (d = c) \)
proof (induct \(d \))
 case \(0 \) thus \(?\) case by fastforce
next
 case \(\text{Suc} \ n \ c \)
 thus \(?\) case
 by (cases \(c \)) (auto simp add: le-Suc-eq)
qed

lemma all-le-eq: \(\forall a :: \text{nat}. (a < d) = (a < c) \rightarrow (d = c) \)
using all-le-eq-imp-eq by auto

lemma typeof-new: typeof (new \(s \ t \)) = typeofNew \(t \)
 by (cases \(t \)) (simp-all add: new-def typeofNew-def)

lemma new-eq: \(\text{new} \ s1 \ t = \text{new} \ s2 \ t \) = \(\forall x. \text{typeof} \ x = \text{typeofNew} \ t \rightarrow \text{alive} \ x \ s1 = \text{alive} \ x \ s2 \)
by (cases \(t \))
 (auto simp add: new-eq alive-def aliveImpl-def value-class-inhabitants value-array-inhabitants all-le-eq)

lemma new-update [simp]: new \(s \langle l := x \rangle \) \(t \) = \(\text{new} \ s \ t \)
by (simp add: new-eq)

lemma alive-alloc-propagation:
assumes alive-s: \(\text{alive} \ x \ s \)
shows \(\text{alive} \ x \ (s \langle l := x \rangle) \)
proof (cases \(t \))
 case new-instance with alive-s show \(?\)thesis
 by (cases \(x \))
 (simp-all add: alive-def aliveImpl-def alloc-def
 alloc-new-instance-in-Store [THEN Abs-Store-inverse])
next
 case new-array with alive-s show \(?\)thesis
 by (cases \(x \))
 (simp-all add: alive-def aliveImpl-def alloc-def
 alloc-new-array-in-Store [THEN Abs-Store-inverse])
qed

lemma alive-alloc-exhaust: \(\text{alive} \ x \ (s \langle t \rangle) \) = \(\text{alive} \ x \ s \vee (x = \text{new} \ s \ t) \)
proof
 assume alive-alloc: \(\text{alive} \ x \ (s \langle t \rangle) \)
 show \(\text{alive} \ x \ s \vee x = \text{new} \ s \ t \)
 proof (cases \(t \))
 case (new-instance \(C \))
 with alive-alloc show \(?\)thesis
 by (cases \(x \)) (auto split: split-if-asm
 simp add: alive-def new-def dealloc-def aliveImpl-def)
next
case (new-array T l)
with alive-alloc show \(?thesis \)
by (cases x) (auto split: split-if-asm
 simp add: alive-def new-def alloc-def aliveImpl-def
 alloc-new-array-in-Store \[\text{THEN Abs-Store-inverse} \])
qed
next
assume alive x s \(\vee \) x = new s t
then show alive x (s(t))
proof
assume alive x s thus \(?thesis \) by (rule alive-alloc-propagation)
next
assume new: x=new s t show \(?thesis \)
proof (cases t)
 case new-instance with new show \(?thesis \)
 by (simp add: alive-def aliveImpl-def new-def alloc-def
 alloc-new-instance-in-Store \[\text{THEN Abs-Store-inverse} \])
next
 case new-array with new show \(?thesis \)
 by (simp add: alive-def aliveImpl-def new-def alloc-def
 alloc-new-array-in-Store \[\text{THEN Abs-Store-inverse} \])
qed
qed

lemma alive-alloc-cases [consumes 1]:
 \[\begin{align*}
 \text{alive} \ x \ (s(t)) ; \ text{alive} \ x \ s \Rightarrow P ; \ x = \text{new} \ s \ t \Rightarrow P \\
 \Rightarrow P
 \end{align*} \]
by (auto simp add: alive-alloc-exhaust)

lemma aliveImpl-vals-independent: aliveImpl x (s[vals := z]) = aliveImpl x s
by (cases x) (simp-all add: aliveImpl-def)

lemma access-arr-len-new-alloc [simp]:
 \[s(\text{new-array} \ T \ l) @@ \text{arr-len} (\text{new} \ s \ (\text{new-array} \ T \ l)) = \text{intgV} (\text{int} \ l) \]
by (subst access-def)
 (simp add: new-def alloc-def alive-def
 alloc-new-array-in-Store \[\text{THEN Abs-Store-inverse} \] access-def)

lemma access-new [simp]:
 assumes ref-new: ref l = new s t
 assumes no-arr-len: isNewArr t \(\rightarrow \) l \(\neq \) arr-len (new s t)
 shows s(t) @@ l = init (ltype l)
proof
 from ref-new
 have \(\sim \text{alive} \ (\text{ref} \ l) \ s \)
 by simp
 hence s@@ l = init (ltype l)
 by simp
moreover
 from ref-new
 have alive (ref l) (s(t))
Store5. We have to take into account that the length of an array is changed during allocation.

by simp
moreover
from no-arr-len
have vals (Rep-Store (s(t))) l = s@@l
by (cases t)
(simp-all add: alloc-def new-def access-def
alloc-new-instance-in-Store [THEN Abs-Store-inverse]
alloc-new-array-in-Store [THEN Abs-Store-inverse])
ultimately show s⟨t⟩@@l = init (ltype l)
by (subst access-def) (simp)
qed

lemma access-alloc [simp]:
assumes no-arr-len-new: isNewArr t ⟷ l ≠ arr-len (new s t)
shows s⟨t⟩@@l = s@@l
proof –
show ?thesis
proof (cases alive (ref l) (s⟨t⟩))
case True
then
have access-alloc-vals: s⟨t⟩@@l = vals (Rep-Store (s⟨t⟩)) l
by (simp add: access-def alloc-def)
from True show ?thesis
proof (cases rule: alive-alloc-cases)
assume alive-l-s: alive (ref l) s
with new-unalive-old-Store
have l-not-new: ref l ≠ new s t
by fastforce
hence vals (Rep-Store (s⟨t⟩)) l = s@@l
by (cases t)
(auto simp add: alloc-def new-def access-def
alloc-new-instance-in-Store [THEN Abs-Store-inverse]
alloc-new-array-in-Store [THEN Abs-Store-inverse])
with access-alloc-vals
show ?thesis
by simp
next
assume ref-new: ref l = new s t
with no-arr-len-new
have s⟨t⟩@@l = init (ltype l)
by (simp add: access-new)
moreover
from ref-new have s@@l = init (ltype l)
by simp
ultimately
show ?thesis by simp
qed
next
case False
hence s⟨t⟩@@l = init (ltype l)
by (simp)
moreover
from False have ¬ alive (ref l) s
by (auto simp add: alive-alloc-propagation)
hence s@l = init (ltype l)
by simp
ultimately show ?thesis by simp
qed
qed

Store13

lemma Store-eqI:
 assumes eq-alive: \(\forall x. \) alive \(x \) \(s_1 \) = alive \(x \) \(s_2 \)
 assumes eq-access: \(\forall l. s_1 \ @@ l = s_2 \ @@ l \)
 shows \(s_1 = s_2 \)
proof (cases s1 = s2)
 case True thus ?thesis.
next
 case False note neq-s1-s2 = this
 show ?thesis proof (cases newOID (Rep-Store s1) = newOID (Rep-Store s2))
 case False have \(\exists C. \) newOID (Rep-Store s1) \(C \) \(\neq \) newOID (Rep-Store s2) \(C \)
 proof (rule ccontr)
 assume \(\neg (\exists C. \) newOID (Rep-Store s1) \(C \) \(\neq \) newOID (Rep-Store s2) \(C \))
 then have newOID (Rep-Store s1) = newOID (Rep-Store s2) by (blast intro: ext)
 with False show False ..
 qed
 with eq-alive obtain C
 where newOID (Rep-Store s1) \(C \) \(\neq \) newOID (Rep-Store s2) \(C \)
 \(\forall a. \) alive (objV \(C \) \(a \)) \(s_1 \) = alive (objV \(C \) \(a \)) \(s_2 \) by auto
 then show ?thesis by (simp add: all-le-eq alive-def aliveImpl-def)
 next
 case True note eq-newOID = this
 show ?thesis proof (cases vals (Rep-Store s1) = vals (Rep-Store s2))
 case True with eq-newOID eq-newAID
have \((\text{Rep-Store } s_1) = (\text{Rep-Store } s_2)\)
 by (cases \(\text{Rep-Store } s_1\), cases \(\text{Rep-Store } s_2\)) simp
hence \(s_1 = s_2\)
 by (simp add: \(\text{Rep-Store-inject}\))
with \(\text{neq-s1-s2}\) show \(\text{thesis}\)
 by simp

next
 case False
 have \(\exists l. \text{vals } (\text{Rep-Store } s_1) l \neq \text{vals } (\text{Rep-Store } s_2) l\)
 proof (rule ccontr)
 assume \(\neg (\exists l. \text{vals } (\text{Rep-Store } s_1) l \neq \text{vals } (\text{Rep-Store } s_2) l)\)
 hence \(\text{vals } (\text{Rep-Store } s_1) = \text{vals } (\text{Rep-Store } s_2)\)
 by (blast intro: ext)
 with False show False ..
 qed
then obtain \(l\)
where \(\text{vals } (\text{Rep-Store } s_1) l \neq \text{vals } (\text{Rep-Store } s_2) l\)
 by auto
 with \(\text{eq-access}\) have False
 by (simp add: \(\text{access-def}\))
 thus \(\text{thesis}\) ..
 qed
qed

Lemma 3.1 in [Poetzsch-Heffter97]. The proof of this lemma is quite an impressive demonstration of readable Isar proofs since it closely follows the textual proof.

\textbf{lemma} \textit{comm}:
 assumes \(\text{neq-l-new:}\ \text{ref } l \neq \text{new } s t\)
 assumes \(\text{neq-x-new:}\ x \neq \text{new } s t\)
 shows \(s(t)(l:=x) = s(l:=x)(t)\)
 proof (rule \text{Store-eqI} [rule-format])
 fix \(y\)
 show alive \(y\) \((s(t)(l:=x)) = \text{alive } y\) \((s(l:=x)(t))\)
 proof
 have alive \(y\) \((s(t)(l:=x)) = \text{alive } y\) \((s(t))\)
 by (rule \text{alive-update-invariant})
 also have \(\ldots = (\text{alive } y\ s \lor (y = \text{new } s t))\)
 by (rule \text{alive-alloc-exhaust})
 also have \(\ldots = (\text{alive } y\ (s(l:=x)) \lor y = \text{new } s t)\)
 by (simp only: \text{alive-update-invariant})
 also have \(\ldots = (\text{alive } y\ (s(l:=x)) \lor y = \text{new } (s(l:=x)) t)\)
 proof
 have \(\text{new } s t = \text{new } (s(l:=x)) t\)
 by simp
 thus \(\text{thesis}\) by simp
 qed
 also have \(\ldots = \text{alive } y\) \((s(l:=x)(t))\)
 by (simp add: \text{alive-alloc-exhaust})
 finally show \(\text{thesis}\) .
 qed
 qed
 next
 fix \(k\)
show \(s(t)(l := x) @@ k = s\langle l := x\rangle(t) @@ k \)

proof (cases \(l=k \))

case False note neq-l-k = this

\[\text{show } \text{thesis} \]

proof (cases isNewArr \(t \) \(\rightarrow k \neq \text{arr-len} (\text{new } s t) \))

case True from neq-l-k

\[\text{have } s(t)(l := x) @@ k = s(t) @@ k \text{ by simp} \]

also from True have \(\ldots = s @@ k \) by simp

also from neq-l-k have \(\ldots = s(l := x) @@ k \) by simp

also from True have \(\ldots = s(l := x)(t) @@ k \) by simp

finally show ?thesis.

next
case False then obtain T n where

\[t t := \text{new-array } T n \text{ and } k = \text{arr-len} (\text{new } s (\text{new-array } T n)) \]

by (cases \(t \)) auto

from \(k \) have \(k' = \text{arr-len} (\text{new } (s(l := x)) (\text{new-array } T n)) \)

by simp

from neq-l-k

\[\text{have } s(t)(l := x) @@ k = s(t) @@ k \text{ by simp} \]

also from \(t k \)

\[\text{have } \ldots = \text{intgV } (\text{int } n) \]

by simp

also from \(t k' \)

\[\text{have } \ldots = s(l := x)(t) @@ k \]

by (simp del: new-update)

finally show ?thesis.

qed

next
case True note eq-l-k = this

have lemma-3-1:

\[\text{ref } l \neq \text{new } s t \implies \text{alive } (\text{ref } l) (s(t)) = \text{alive } (\text{ref } l) s \]

by (simp add: alive-alloc-exhaust)

have lemma-3-2:

\[x \neq \text{new } s t \implies \text{alive } x (s(t)) = \text{alive } x s \]

by (simp add: alive-alloc-exhaust)

have lemma-3-3: \(s(l := x, t) @@ l = s(l := x) @@ l \)

proof –

from neq-l-new have \(\text{ref } l \neq \text{new } (s(l := x)) t \)

by simp

hence isNewArr \(t \) \(\rightarrow l \neq \text{arr-len} (\text{new } (s(l := x)) t) \)

by (cases \(t \)) auto

thus ?thesis

by (simp)

qed

show ?thesis

proof (cases alive \(x s \))

case True note alive-x = this

show ?thesis

proof (cases alive \((\text{ref } l) s \))
case True note alive-l = this
show ?thesis
proof (cases typeof x ≤ ltype l)
 case True
 with alive-l alive-x
 have s(l:=x)@@l = x
 by (rule update-access-same)
 moreover
 have s(t):=x)@@l = x
 proof
 from alive-l neq-l-new have alive (ref l) (s(t))
 by (simp add: lemma-3-1)
 moreover
 from alive-x neq-x-new have alive x (s(t))
 by (simp add: lemma-3-2)
 ultimately
 show s(t):=x)@@l = x
 using True by (rule update-access-same)
 qed
 ultimately show ?thesis
 using eq-l-k lemma-3-3 by simp
next
 case False
 thus ?thesis by simp
 qed
next
 case False note not-alive-l = this
 from not-alive-l neq-l-new have ¬ alive (ref l) (s(t))
 by (simp add: lemma-3-1)
 then have s(t):=x)@@l = init (ltype l)
 by simp
 also have ... = s(l:=x)@@l
 by simp
 also have ... = s(t):=x)@@l
 by (simp add: lemma-3-3)
 finally show ?thesis
 by (simp add: eq-l-k)
 qed
next
 case False note not-alive-x = this
 from not-alive-x neq-x-new have ¬ alive x (s(t))
 by (simp add: lemma-3-2)
 then have s(t):=x)@@l = s(t)@@l
 by (simp)
 also have ... = s(l:=x)@@l
 by (simp add: lemma-3-3)
proof
 from neq-l-new
 have isNewArr t → l ≠ arr-len (new s t)
 by (cases t) auto
 thus ?thesis
 by (simp)
 qed
next
 case False note not-alive-x = this
 from not-alive-x neq-x-new have ¬ alive x (s(t))
 by (simp add: lemma-3-2)
 then have s(t):=x)@@l = s(t)@@l
 by (simp)
 also have ... = s(l:=x)@@l
 by (simp)
 also have ... = s(l:=x)@@l
by (simp add: lemma-3-3)
finally show thesis by (simp add: eq-l-k)
qed
qed
qed

end

13 Store Properties

theory StoreProperties
imports Store
begin

This theory formalizes advanced concepts and properties of stores.

13.1 Reachability of a Location from a Reference

For a given store, the function reachS yields the set of all pairs \((l, v)\) where \(l\) is a location that is reachable from the value \(v\) (which must be a reference) in the given store. The predicate reach decides whether a location is reachable from a value in a store.

inductive
reach :: Store ⇒ Location ⇒ Value ⇒ bool
(\(\vdash \) reachable' from \([91,91,91]90\))
for s :: Store
where
Immediate: \(\text{ref } l \neq \text{nullV} \implies s \vdash l \text{ reachable-from } \text{ref } l\)
| Indirect: \([s \vdash l \text{ reachable-from } (s @@ k); \text{ref } k \neq \text{nullV}] \implies s \vdash l \text{ reachable-from } \text{ref } k\)

Note that we explicitly exclude \(\text{nullV}\) as legal reference for reachability. Keep in mind that static fields are not associated to any object, therefore \(\text{ref}\) yields \(\text{nullV}\) if invoked on static fields (see the definition of the function \(\text{ref}\), Sect. 11). Reachability only describes the locations directly reachable from the object or array by following the pointers and should not include the static fields if we encounter a \(\text{nullV}\) reference in the pointer chain.

We formalize some properties of reachability. Especially, Lemma 3.2 as given in [PH97, p. 53] is proven.

lemma unreachable-Null:
assumes reach: \(s \vdash l \text{ reachable-from } x\)
shows \(x \neq \text{nullV}\)
using reach by (induct) auto

corollary unreachable-Null-simp [simp]:
\(\neg s \vdash l \text{ reachable-from } \text{nullV}\)
by (iprover dest: unreachable-Null)

corollary unreachable-NullE [elim]:
\(s \vdash l \text{ reachable-from } \text{nullV} \implies P\)
by (simp)

lemma reachObjLoc [simp,intro]:

\[C = \text{cls cf} \implies \models s \vdash \text{objLoc cf a} \text{ reachable-from} \text{objV C a} \]

lemma reachArrLoc [simp,intro]: \(s \vdash \text{arrLoc T a i} \text{ reachable-from} \text{arrV T a} \)

by (rule reach.Indirect [of arrLoc T a i,simplified])

lemma reachArrLen [simp,intro]: \(s \vdash \text{arrLenLoc T a} \text{ reachable-from} \text{arrV T a} \)

by (rule reach.Indirect [of arrLenLoc T a,simplified])

lemma unreachStatic [simp]: \(\neg s \vdash \text{staticLoc f} \text{ reachable-from} x \)

proof

\[
\{ \\
\text{fix } y \text{ assume } s \vdash y \text{ reachable-from} x \quad y = \text{staticLoc f} \\
\text{then have } \text{False} \\
\text{by } \text{induct auto} \\
\}
\]

thus ?thesis

by auto

qed

lemma unreachStaticE [elim]: \(s \vdash \text{staticLoc f} \text{ reachable-from} x \implies P \)

by (simp add: unreachStatic)

lemma reachable-from-ArrLoc-impl-Arr [simp,intro]:

assumes reach-loc: \(s \vdash l \text{ reachable-from} (s \# \text{arrLoc T a i}) \)

shows \(s \vdash l \text{ reachable-from} (\text{arrV T a}) \)

using reach.Indirect [OF reach-loc]

by simp

lemma reachable-from-ObjLoc-impl-Obj [simp,intro]:

assumes reach-loc: \(s \vdash l \text{ reachable-from} (s \# \text{objLoc cf a}) \)

assumes C: \(C = \text{cls cf} \)

shows \(s \vdash l \text{ reachable-from} (\text{objV C a}) \)

using C reach.Indirect [OF reach-loc]

by simp

Lemma 3.2 (i)

lemma reach-update [simp]:

assumes unreachable-l-x: \(\neg s \vdash l \text{ reachable-from} x \)

shows \(s(l := y) \vdash k \text{ reachable-from} x = s \vdash k \text{ reachable-from} x \)

proof

assume \(s \vdash k \text{ reachable-from} x \)

from this unreachable-l-x

show \(s(l := y) \vdash k \text{ reachable-from} x \)

proof (induct)

case (Immediate k)

have \(\text{ref } k \neq \text{nullV} \) **by** fact

then show \(s(l := y) \vdash k \text{ reachable-from} (\text{ref } k) \)

by (rule reach.Indirect)

next

case (Indirect k m)

have hyp: \(\neg s \vdash l \text{ reachable-from} (s \# m) \)

implies \(s(l := y) \vdash k \text{ reachable-from} (s \# m) \) **by** fact

have \(\text{ref } m \neq \text{nullV} \) **and** \(\neg s \vdash l \text{ reachable-from} (\text{ref } m) \) **by** fact
hence \(l \neq m \Rightarrow \neg s \vdash l \text{ reachable-from } (s @ m) \)
 by \((\text{auto intro: reach.intro})\)
with \(\text{hyp} \) have \(s(l := y) \vdash k \text{ reachable-from } (s(l := y) @ m) \)
 by \(\text{simp}\)
then show \(s(l := y) \vdash k \text{ reachable-from } (\text{ref } m) \)
 by \((\text{rule reach.Indirect}) (\text{rule Indirect.hyps})\)
qed
next
assume \(s(l := y) \vdash k \text{ reachable-from } x \)
from this unreachable-l-x
show \(s \vdash k \text{ reachable-from } x \)
proof \((\text{induct})\)
case \((\text{Immediate } k)\)
have \(\text{ref } k \neq \text{nullV} \) by \(\text{fact}\)
then show \(s \vdash k \text{ reachable-from } (\text{ref } k) \)
 by \((\text{rule reach.Immediate})\)
next
case \((\text{Indirect } k \ m)\)
with \(\text{Indirect.hyps}\)
have \(\text{hyp: } \neg s \vdash l \text{ reachable-from } (s(l := y) @ m) \)
 \(\Rightarrow s \vdash k \text{ reachable-from } (s(l := y) @ m) \) by \(\text{simp}\)
have \(\text{ref } m \neq \text{nullV} \) and \(\neg s \vdash l \text{ reachable-from } (\text{ref } m) \) by \(\text{fact+}\)
hence \(l \neq m \Rightarrow s \vdash l \text{ reachable-from } (s @ m) \)
 by \((\text{auto intro: reach.intro})\)
with \(\text{hyp} \) have \(s \vdash k \text{ reachable-from } (s @ m) \)
 by \(\text{simp}\)
thus \(s \vdash k \text{ reachable-from } (\text{ref } m) \)
 by \((\text{rule reach.Indirect}) (\text{rule Indirect.hyps})\)
qed
qed

Lemma 3.2 (ii)

lemma \(\text{reach2: } \neg s \vdash l \text{ reachable-from } x \Rightarrow \neg s(l := y) \vdash l \text{ reachable-from } x \)
 by \(\text{(simp)}\)

Lemma 3.2 (iv)

lemma \(\text{reach4: } \neg s \vdash l \text{ reachable-from } (\text{ref } k) \Rightarrow k \neq l \lor (\text{ref } k) = \text{nullV} \)
 by \((\text{auto intro: reach.intro})\)

lemma \(\text{reachable-isRef: } \)
 assumes \(\text{reach: } s \vdash l \text{ reachable-from } x \)
 shows \(\text{isRefV } x \)
 using \(\text{reach}\)
proof \((\text{induct})\)
case \((\text{Immediate } l)\)
show \(\text{isRefV } (\text{ref } l) \)
 by \((\text{cases } l) \text{ simp-all}\)
next
case \((\text{Indirect } l \ k)\)
show \(\text{isRefV } (\text{ref } k) \)
 by \((\text{cases } k) \text{ simp-all}\)
qed
lemma val-ArrLen-IntgT: isArrLenLoc l \implies typeof \(s@l \) = IntgT
proof –
 assume isArrLen: isArrLenLoc l
 have T: typeof \(s@l \) \leq \ltype l
 by (simp)
 also from isArrLen have I: \ltype l = IntgT
 by (cases l) simp-all
 finally show ?thesis
 by (auto elim: rtranclE simp add: le-Javatype-def subtype-defs)
qed

lemma access-alloc′ [simp]:
 assumes no-arr-len: \neg isArrLenLoc l
 shows \(s\langle t \rangle @@l = s@l \)
proof –
 from no-arr-len
 have isNewArr t \implies l \neq arr-len (new s t)
 by (cases t) (auto simp add: new-def isArrLenLoc-def split: Location.splits)
 thus ?thesis
 by (rule access-alloc)
qed

Lemma 3.2 (v)

lemma reach-alloc [simp]: \(s\langle t \rangle l \longrightarrow x = s l \longrightarrow x \)
proof
 assume \(s\langle t \rangle l \longrightarrow x \)
 thus \(s l \longrightarrow x \)
 proof (induct)
 case (Immediate l)
 thus \(s l \longrightarrow ref l \)
 by (rule reach.intros)
 next
 case (Indirect l k)
 have reach-k: \(s l \longrightarrow (s\langle t \rangle @@k) \)
 by fact
 moreover
 have \(s\langle t \rangle @@k = s@@k \)
 proof –
 from reach-k have isRef: isRefV \(s\langle t \rangle @@k \)
 by (rule reachable-isRef)
 have \(\neg isArrLenLoc k \)
 by (rule ccontr, simp)
 assume isArrLenLoc k
 proof (rule ccontr, simp)
 assume isArrLenLoc k
 then have typeof \(s\langle t \rangle @@k \) = IntgT
 by (rule val-ArrLen-IntgT)
 with isRef
 show False
 by (cases \(s\langle t \rangle @@k \)) simp-all
 qed
 thus ?thesis
 by (rule access-alloc′)
 qed
 ultimately have \(s l \longrightarrow (s@@k) \)
 by simp
thus $s \vdash l \text{ reachable-from ref } k$
by (rule reach.intros) (rule Indirect.hyps)
qed

next
assume $s \vdash l \text{ reachable-from } x$
thus $s(t) \vdash l \text{ reachable-from } x$
proof (induct)
 case (Immediate l)
 thus $s(t) \vdash l \text{ reachable-from ref } l$
 by (rule reach.intros)
next
 case (Indirect l k)
 have reach-k:
 $s \langle t \rangle \vdash l \text{ reachable-from } (s \@@ k)$
 by fact
 moreover
 have $s(t) \@@ k = s \@@ k$
 proof
 from reach-k
 have isRef: $\text{isRefV } (s \@@ k)$
 by (rule reachable-isRef)
 have $\neg \text{isArrLenLoc } k$
 proof
 (rule ccontr, simp)
 assume $\text{isArrLenLoc } k$
 then have $\text{typeof } (s \@@ k) = \text{IntgT}$
 by (rule val-ArrLen-IntgT)
 with isRef
 show False
 by (cases $s \@@ k$) simp-all
 qed
 thus ?thesis
 by (rule access-alloc')
 qed
 ultimately have $s(t) \vdash l \text{ reachable-from } (s(t) \@@ k)$
 by simp
 thus $s(t) \vdash l \text{ reachable-from ref } k$
 by (rule reach.intros) (rule Indirect.hyps)
 qed
qed

Lemma 3.2 (vi)

lemma reach6: $\text{isprimitive } \text{typeof } x \implies \neg s \vdash l \text{ reachable-from } x$
proof
 assume prim: $\text{isprimitive } \text{typeof } x$
 assume $s \vdash l \text{ reachable-from } x$
 hence $\text{isRefV } x$
 by (rule reachable-isRef)
 with prim
 show False
 by (cases x) simp-all
 qed

Lemma 3.2 (iii)

lemma reach3:
 assumes k-y: $\neg s \vdash k \text{ reachable-from } y$
 assumes k-x: $\neg s \vdash k \text{ reachable-from } x$
 shows $\neg s(l:=y) \vdash k \text{ reachable-from } x$
proof
assume $s(l:=y)\vdash k \text{ reachable-from } x$
from this $k\leftarrow y \quad k\leftarrow x$
show False
proof (induct)
 case (Immediate l)
 have $\neg s\vdash l \text{ reachable-from } \text{ref } l$ and $\text{ref } l \neq \text{nullV}$ by fact+
 thus False
 by (iprover intro: reach_intros)
next
 case (Indirect $m \quad k$)
 have $k\text{-not-Null: } \text{ref } k \neq \text{nullV}$ by fact
 have $\text{not-m-y: } \neg s\vdash m \text{ reachable-from } y$ by fact
 have $\text{hyp: } [\neg s\vdash m \text{ reachable-from } y; \neg s\vdash m \text{ reachable-from } (s(l := y)@@k)] \implies \text{False}$ by fact
 have $m\text{-upd-k: } s(l := y)\vdash m \text{ reachable-from } (s(l := y)@@k)$ by fact
 show False
 proof (cases $l=k$)
 case False
 then have $s(l := y)@@k = s @@ k$ by simp
 moreover
 from $\text{not-m-k k\text{-not-Null}}$ have $\neg s\vdash m \text{ reachable-from } (s @@ k)$
 by (iprover intro: reach_intros)
 ultimately show False using not-m-y hyp by simp
 next
 case True
 note eq-l-k = this
 show thesis
 proof (cases $\text{alive (ref } l) \quad \text{alive } y \quad \text{typeaf } y \leq l\text{type } l$)
 case True
 with eq-l-k have $s(l := y)@@k = y$
 by simp
 with not-m-y hyp show False by simp
 next
 case False
 hence $s(l := y) = s$
 by auto
 moreover
 from $\text{not-m-k k\text{-not-Null}}$ have $\neg s\vdash m \text{ reachable-from } (s @@ k)$
 by (iprover intro: reach_intros)
 ultimately show False
 using not-m-y hyp by simp
 qed
 qed
 qed
 qed

Lemma 3.2 (vii).

lemma unreachable-from-init [simp,intro]: $\neg s\vdash l \text{ reachable-from } (\text{init } T)$
using reach6 by (cases T) simp-all

lemma ref-reach-unalive:
 assumes $\text{unalive-x: } \neg \text{alive } x \quad s$
 assumes $l\leftarrow x: \neg s\vdash l \text{ reachable-from } x$
shows $x = \text{ref } l$
using $l-x \text{ unalive-x}$
proof induct
next
case (Immediate l)
show $\text{ref } l = \text{ref } l$
by simp

next
case (Indirect $l \ k$)
have $\text{ref } k \neq \text{nullV}$ by fact
have $\neg \text{ alive } (\text{ref } k) \ s$ by fact
hence $s@k = \text{init } (\text{ltype } k)$ by simp
moreover have $s\vdash l \text{ reachable-from } (s@k)$ by fact
ultimately have False by simp
thus ?case ..
qed

lemma loc-new-reach:
assumes l: $\text{ref } l = \text{new } s \ t$
assumes $l-x$: $s\vdash l \text{ reachable-from } x$
shows $x = \text{new } s \ t$
using $l-x \ l$
proof induct
next
case (Immediate $l \ k$)
hence $s@k = \text{new } s \ t$ by iprover
moreover have $\neg \text{ alive } (\text{new } s \ t) \ s$
by simp
moreover have $\text{alive } (s@k) \ s$
by simp
ultimately have False by simp
thus ?case ..
qed

Lemma 3.2 (viii)

lemma alive-reach-alive:
assumes alive-x: $\text{alive } x \ s$
assumes reach-l: $s\vdash l \text{ reachable-from } x$
shows $\text{alive } (\text{ref } l) \ s$
using reach-l alive-x
proof (induct)
next
case (Immediate $l \ k$)
have hyp: $\text{alive } (s@k) \ s \implies \text{alive } (\text{ref } l) \ s$ by fact
moreover have $\text{alive } (s@k) \ s$ by simp
ultimately
show $\text{alive } (\text{ref } l) \ s$
by iprover
qed
Lemma 3.2 (ix)

Lemma reach9:

Assumes reach-impl-access-eq: \(\forall l. s1 \vdash l \text{ reachable-from } x \rightarrow (s1 @@ l = s2 @@ l) \)
Shows \(s1 \vdash l \text{ reachable-from } x = s2 \vdash l \text{ reachable-from } x \)

Proof

Assume \(s1 \vdash l \text{ reachable-from } x \)

From this reach-impl-access-eq

Show \(s2 \vdash l \text{ reachable-from } x \)

Proof (induct)

Case (Immediate \(l \))

Show \(s2 \vdash l \text{ reachable-from } \text{ref } l \)

by (rule reach.intros) (rule Immediate.hyps)

Next

Case (Indirect \(l \) \(k \))

Have hyp: \(\forall l. s1 \vdash l \text{ reachable-from } (s1 @@ k) \rightarrow s1 @@ l = s2 @@ l \)

\(\rightarrow s2 \vdash l \text{ reachable-from } (s1 @@ k) \) by fact

Have k-not-Null: ref \(k \neq \text{nullV} \) by fact

Have reach-impl-access-eq:

\(\forall l. s1 \vdash l \text{ reachable-from ref } k \rightarrow s1 @@ l = s2 @@ l \) by fact

Have \(s1 \vdash l \text{ reachable-from } (s1 @@ k) \) by fact

with k-not-Null

Have \(s1 @@ k = s2 @@ k \) by (iprover intro: reach-impl-access-eq [rule-format] reach.intros)

Moreover from reach-impl-access-eq k-not-Null

Have \(\forall l. s1 \vdash l \text{ reachable-from ref } k \rightarrow s1 @@ l = s2 @@ l \) by (iprover intro: reach.intros)

Then have \(s2 \vdash l \text{ reachable-from } (s1 @@ k) \)

by (rule hyp)

Ultimately have \(s2 \vdash l \text{ reachable-from } (s2 @@ k) \)

by simp

Thus \(s2 \vdash l \text{ reachable-from ref } k \)

by (rule reach.intros) (rule Indirect.hyps)

Qed

Next

Assume \(s2 \vdash l \text{ reachable-from } x \)

From this reach-impl-access-eq

Show \(s1 \vdash l \text{ reachable-from } x \)

Proof (induct)

Case (Immediate \(l \))

Show \(s1 \vdash l \text{ reachable-from ref } l \)

by (rule reach.intros) (rule Immediate.hyps)

Next

Case (Indirect \(l \) \(k \))

Have hyp: \(\forall l. s1 \vdash l \text{ reachable-from } (s2 @@ k) \rightarrow s1 @@ l = s2 @@ l \)

\(\rightarrow s1 \vdash l \text{ reachable-from } (s2 @@ k) \) by fact

Have k-not-Null: ref \(k \neq \text{nullV} \) by fact

Have reach-impl-access-eq:

\(\forall l. s1 \vdash l \text{ reachable-from ref } k \rightarrow s1 @@ l = s2 @@ l \) by fact

Have \(s1 \vdash k \text{ reachable-from ref } k \)

by (rule reach.intros) (rule Indirect.hyps)

With reach-impl-access-eq

Have eq-k: \(s1 @@ k = s2 @@ k \)

by simp

From reach-impl-access-eq k-not-Null
reachability of a reference from a reference

\[
\forall l. s_1 \vdash l \text{ reachable-from } (s_1 @ @ k) \implies s_1 @ @ l = s_2 @ @ l
\]

by (iprover intro: reach.intros)

then

have \[
\forall l. s_1 \vdash l \text{ reachable-from } (s_2 @ @ k) \implies s_1 @ @ l = s_2 @ @ l
\]

by (simp add: eq-k)

with eq-k hyp have \[
\forall l. s_1 \vdash l \text{ reachable-from } (s_1 @ @ k)
\]

by simp

thus \[
\vdash s_1 \vdash l \text{ reachable-from ref } k
\]

by (rule reach.intros) (rule Indirect.hyps)

qed

13.2 Reachability of a Reference from a Reference

The predicate \texttt{rreach} tests whether a value is reachable from another value. This is an extension of the predicate \texttt{oreach} as described in [PH97, p. 54] because now arrays are handled as well.

Definition

\[
\texttt{rreach} :: \text{Store} \Rightarrow \text{Value} \Rightarrow \text{Value} \Rightarrow \text{bool}
\]

where

\[
s \vdash \text{Ref y reachable-from x} = (\exists l. s \vdash l \text{ reachable-from } x \land y = \text{ref } l)
\]

Notation

\[
\texttt{rreach} (\vdash \text{Ref - reachable-from - [91,91,91]} 90)
\]

13.3 Disjointness of Reachable Locations

The predicate \texttt{disj} tests whether two values are disjoint in a given store. Its properties as given in [PH97, Lemma 3.3, p. 54] are then proven.

Definition

\[
\texttt{disj} :: \text{Value} \Rightarrow \text{Value} \Rightarrow \text{Store} \Rightarrow \text{bool}
\]

where

\[
disj x y s = (\forall l. \neg s \vdash l \text{ reachable-from } x \lor \neg s \vdash l \text{ reachable-from } y)
\]

Lemma

\[
\texttt{disjI1} : [\forall l. s \vdash l \text{ reachable-from } x \implies \neg s \vdash l \text{ reachable-from } y] \\
\implies \texttt{disj x y s}
\]

by (simp add: disj-def)

Lemma

\[
\texttt{disjI2} : [\forall l. s \vdash l \text{ reachable-from } y \implies \neg s \vdash l \text{ reachable-from } x] \\
\implies \texttt{disj x y s}
\]

by (auto simp add: disj-def)

Lemma

\[
\texttt{disj-cases} [\text{consumes 1}]:
\]

assumes \[
\forall l. s \vdash l \text{ reachable-from } x
\]

assumes \[
\forall l. \neg s \vdash l \text{ reachable-from } y
\]

shows \[
P
\]

using assms by (auto simp add: disj-def)

Lemma 3.3 (i) in [PH97]

Lemma

\[
\texttt{disjI} : [\texttt{disj x y s}; \neg s \vdash l \text{ reachable-from } x; \neg s \vdash l \text{ reachable-from } y] \\
\implies \texttt{disj x y (s(l:=z))}
\]

by (auto simp add: disj-def)

Lemma 3.3 (ii)
Lemma disj2:
 assumes disj-x-y: disj x y s
 assumes disj-x-z: disj x z s
 assumes unreach-l-x: ¬ sl l reachable-from x
 shows disj x y (s(l:=z))
 proof (rule disjII)
 fix k
 assume reach-k-x: s{l := z} k reachable-from x
 show ¬ s{l := z} k reachable-from y
 proof
 − from unreach-l-x reach-k-x
 have reach-s-k-x: s k reachable-from x
 by simp
 with disj-x-z
 have ¬ sl k reachable-from z
 by (simp add: disj-def)
 moreover from reach-s-k-x disj-x-y
 have ¬ sl k reachable-from y
 by (simp add: disj-def)
 ultimately show ?thesis
 by (rule reach3)
 qed
 qed

Lemma 3.3 (iii)

lemma disj3: assumes alive-x-s: alive x s
 shows disj x (new s t) (s(t))
 proof (rule disjII, simp only: reach-alloc)
 fix l
 assume reach-l-x: sl l reachable-from x
 show ¬ s l reachable-from new s t
 proof
 assume reach-l-new: sl new s t reachable-from new s t
 have unalive-new: ¬ alive (new s t) s by simp
 from this reach-l-new
 have new s t = ref l
 by (rule ref-reach-unalive)
 moreover from alive-x-s reach-l-x
 have alive (ref l) s
 by (rule alive-reach-alive)
 ultimately show False
 using unalive-new
 by simp
 qed
 qed

Lemma 3.3 (iv)

lemma disj4: [disj (objV C a) y s; CClassT C ≤ dtype f]
 ⇒ disj (s@@(objV C a)..f) y s
 by (auto simp add: disj-def)

lemma disj4': [disj (arrV T a) y s]
 ⇒ disj (s@@(arrV T a).[i]) y s
 by (auto simp add: disj-def)
13.4 X-Equivalence

We call two stores s_1 and s_2 equivalent wrt. a given value X (which is called X-equivalence) iff X and all values reachable from X in s_1 or s_2 have the same state [PH97, p. 55]. This is tested by the predicate xeq. Lemma 3.4 of [PH97] is then proven for xeq.

definition xeq: $\text{Value} \Rightarrow \text{Store} \Rightarrow \text{Store} \Rightarrow \text{bool}$ where
\[
\text{xeq} \ x \ s \ t = (\text{alive} \ x \ s = \text{alive} \ x \ t \land
\left(\forall \ l. \ s \vdash \ l \text{reachable-from} \ x \rightarrow s@@l = t@@l\right))
\]

abbreviation xeq-syntax: $\text{Store} \Rightarrow \text{Value} \Rightarrow \text{Store} \Rightarrow \text{bool}$

(\ -/ (==[\])/: $[900,0,900]$ 900)

where $s ==[x] \ t == \text{xeq} \ x \ s \ t$

notation (xsymbols) xeq-syntax (\ -/ (≡[\])/: $[900,0,900]$ 900)

lemma xeq1-l: $[\text{alive} \ x \ s = \text{alive} \ x \ t]$:
\[
\land \ l. \ s \vdash \ l \text{reachable-from} \ x \Rightarrow s@@l = t@@l
\]

by (auto simp add: xeq-def)

Lemma 3.4 (i) in [PH97].

lemma xeq1-refl: $s ==[x] \ s$

by (simp add: xeq-def)

Lemma 3.4 (i)

lemma xeq1-sym':
assumes $s-t$: $s ==[x] \ t$
shows $t ==[x] \ s$

proof –
from $s-t$ have $\text{alive} \ x \ s = \text{alive} \ x \ t$ by (simp add: xeq-def)
moreover
from $s-t$ have $\forall \ l. \ s \vdash \ l \text{reachable-from} \ x \Rightarrow s@@l = t@@l$
 by (simp add: xeq-def)
with reach9 [OF this]
have $\forall \ l. \ t \vdash \ l \text{reachable-from} \ x \Rightarrow t@@l = s@@l$
 by simp
ultimately show ?thesis
 by (simp add: xeq-def)
qed

lemma xeq1-sym: $s ==[x] \ t = t ==[x] \ s$

by (auto intro: xeq1-sym')

Lemma 3.4 (i)

lemma xeq1-trans [trans]:
assumes $s-t$: $s ==[x] \ t$
assumes $t-r$: $t ==[x] \ r$
shows $s ==[x] \ r$

proof –
from $s-t \ t-r$
have $\text{alive} \ x \ s = \text{alive} \ x \ r$
 by (simp add: xeq-def)
moreover
have ∀ l. s ⊲ l reachable-from x → s@l = r@l
proof (intro allI impI)
 fix l
 assume reach-l: s ⊲ l reachable-from x
 show s@l = r@l
 proof –
 from reach-l s-t have s@l = t@l
 by (simp add: xeq-def)
 also have t@l = r@l
 proof –
 from s-t have ∀ l. s ⊲ l reachable-from x → s@l = t@l
 by (simp add: xeq-def)
 from reach9 [OF this] reach-l have t ⊲ l reachable-from x
 by simp
 with t-r show ?thesis
 by (simp add: xeq-def)
 qed
 qed
 qed
ultimately show ?thesis
 by (simp add: xeq-def)
qed

Lemma 3.4 (ii)

lemma xeq2:
 assumes xeq: ∀ x. s ⊳[x] t
 assumes static-eq: ∀ f. s@@(staticLoc f) = t@@(staticLoc f)
 shows s = t
proof (rule Store-eqI)
 from xeq
 show ∀ x. alive x s = alive x t
 by (simp add: xeq-def)
next
show ∀ l. s@l = t@l
proof
 fix l
 show s@l = t@l
 proof (cases l)
 case (objLoc cf a)
 have l = objLoc cf a by fact
 hence s ⊲ l reachable-from (objV (cls cf) a)
 by simp
 with xeq show ?thesis
 by (simp add: xeq-def)
 next
 case (staticLoc f)
 have l = staticLoc f by fact
 with static-eq show ?thesis
 by (simp add: xeq-def)
 next
 case (arrLenLoc T a)
 have l = arrLenLoc T a by fact
hence \(s \vdash l \text{ reachable-from} (\text{arr} V T a) \)
by simp
with xeq show \(?thesis\)
by (simp add: xeq-def)

next

\begin{cases}
\text{case \((\text{arrLoc} T a i)\)}
\text{have \(l = \text{arrLoc} T a i \) by fact}
\text{hence \(s \vdash l \text{ reachable-from} (\text{arr} V T a) \)}
\text{by simp}
\text{with xeq show \(?thesis\)}
\text{by (simp add: xeq-def)}
\end{cases}

qed

ged

Lemma 3.4 (iii)

\textbf{lemma} xeq3:
\begin{itemize}
\item \textbf{assumes} unreach-l: \(\neg s \vdash l \text{ reachable-from} x \)
\item \textbf{shows} \(s \equiv [x] s(l:=y) \)
\item \textbf{proof} (rule xeqI)
\item show alive x s = alive x (s(l := y))
\text{by simp}
\end{itemize}

next

\begin{itemize}
\item fix \(k \)
\item \textbf{assume} reach-k: \(s \vdash k \text{ reachable-from} x \)
\item with unreach-l \textbf{have} \(l \neq k \) by auto
\item then show \(s@@k = s(l := y)@@k \)
\text{by simp}
\end{itemize}

qed

Lemma 3.4 (iv)

\textbf{lemma} xeq4: \textbf{assumes} not-new: \(x \neq \text{new} s t \)
\textbf{shows} \(s \equiv [x] s(t) \)
\textbf{proof} (rule xeqI)
\begin{itemize}
\item from not-new \textbf{show} alive x s = alive x (s(t))
\text{by (simp add: alive-alloc-exhaust)}
\end{itemize}

next

\begin{itemize}
\item fix \(l \)
\item \textbf{assume} reach-l: \(s \vdash l \text{ reachable-from} x \)
\item show \(s@@l = s(t)@@l \)
\item \textbf{proof} (cases isNewArr t \(\rightarrow \) \(l \neq \text{arr-len} \ (\text{new} s t) \))
\item \textbf{case} True
\item with reach-l \textbf{show} \(?thesis\)
\text{by simp}
\item \textbf{next}
\item \textbf{case} False
\item then obtain \(T n \) where \(t: t = \text{new-array} T n \) and \(l: l = \text{arr-len} \ (\text{new} s t) \)
\text{by (cases t) auto}
\item hence ref l = new s t
\text{by simp}
\item from this reach-l
\item have \(x = \text{new} s t \)
\end{itemize}
Lemma 3.4 (v)

lemma xeq5: \(s \equiv [x] t \iff \text{reachable-from } x = t \rightarrow \text{reachable-from } x \)

by (rule reach9) (simp add: xeq-def)

13.5 T-Equivalence

T-equivalence is the extension of X-equivalence from values to types. Two stores are T-equivalent iff they are X-equivalent for all values of type T. This is formalized by the predicate \(\text{teq} \) [PH97, p. 55].

definition teq :: \(\text{Javatype} \Rightarrow \text{Store} \Rightarrow \text{Store} \Rightarrow \text{bool} \) where

\[
\text{teq } t \; s1 \; s2 = (\forall x. \text{typeof } x \leq t \rightarrow s1 \equiv [x] s2)
\]

13.6 Less Alive

To specify that methods have no side-effects, the following binary relation on stores plays a prominent role. It expresses that the two stores differ only in values that are alive in the store passed as first argument. This is formalized by the predicate \(\text{lessalive} \) [PH97, p. 55]. The stores have to be X-equivalent for the references of the first store that are alive, and the values of the static fields have to be the same in both stores.

definition lessalive :: \(\text{Store} \Rightarrow \text{Store} \Rightarrow \text{bool} \) where

\[
\text{lessalive } s \; t = (\forall x. \text{alive } x \; s \rightarrow s \equiv [x] \; t) \land (\forall f. s @@ \text{staticLoc } f = t @@ \text{staticLoc } f)
\]

abbreviation (xsymbols)

lessalive-syntax :: \(\text{Store} \Rightarrow \text{Store} \Rightarrow \text{bool} \) where

\[
s \ll t = \text{lessalive } s \; t
\]

We define an introduction rule for the new operator.

lemma lessaliveI: \[
\[
\forall x. \text{alive } x \; s \Rightarrow s \equiv [x] \; t; \forall f. \text{staticLoc } f = t @@ \text{staticLoc } f
\]

by (simp add: lessalive-def)

It can be shown that \(\text{lessalive} \) is reflexive, transitive and antisymmetric.

lemma lessalive-refl: \(s \ll s \)

by (simp add: lessalive-def xeq1-refl)

lemma lessalive-trans [trans]:

\[
\text{assumes } s-t: s \ll t
\]

\[
\text{assumes } t-w: t \ll w
\]

\[
\text{shows } s \ll w
\]

proof (rule lessaliveI)

\[
\text{fix } x
\]

\[
\text{assume alive-x-s: alive } x \; s
\]

\[
\text{with } s-t \text{ have } s \equiv [x] \; t
\]

by (simp add: lessalive-def)

also
have \(t \equiv [x] w \)

proof
 from alive-x-s s-t have alive x t by (simp add: lessalive-def xeq-def)
 with t-w show \(?thesis\)
 by (simp add: lessalive-def)
 qed
finally show \(s \equiv [x] w \).

next
fix \(f \)
from s-t t-w show \(s \equiv [x] w \)
 by (simp add: lessalive-def)
qed

lemma lessalive-antisym:
 assumes \(s \ll t \)
 assumes \(t \ll s \)
 shows \(s = t \)
proof (rule xeq2)
 show \(\forall x. \ s \equiv [x] \ t \)
 proof
 fix \(x \)
 show \(s \equiv [x] \ t \)
 proof (cases \(\text{alive} \ x \ s \))
 case True
 with s-t show \(?thesis\) by (simp add: lessalive-def)
 next
 case False
 show \(?thesis\)
 proof (cases \(\text{alive} \ x \ t \))
 case True
 with t-s show \(?thesis\)
 by (subst xeq1-sym) (simp add: lessalive-def)
 next
 case False
 show \(?thesis\)
 proof (rule xeqI)
 from False unalive-x-s show \(\text{alive} \ x \ s = \text{alive} \ x \ t \) by simp
 next
 fix \(l \)
 assume \(\text{reach} \cdot x \cdot s \vdash \text{reachable-from} \ x \)
 with unalive-x-s have \(x \vdash \text{ref} \ l \)
 by (rule \text{ref\dash reach\dash unalive})
 with unalive-x-s have \(s \equiv [\ldots] \ l = \text{init} \ (\text{ll} \ l) \)
 by simp
 also from \(\text{reach} \cdot x \cdot s \)
 have \(\text{reachable-from} \ x \)
 by (auto intro: \text{reach\dash Immediate unreachable-Null})
 with False have \(t \equiv [\ldots] \ l = \text{init} \ (\text{ll} \ l) \)
 by simp
 finally show \(s \equiv [\ldots] \ l = t \equiv [\ldots] \ l \)
 by simp
 qed
 qed
next
from s-t show \(\forall f. \ s \equiv [\ldots] \ \text{staticLoc} \ f = t \equiv [\ldots] \ \text{staticLoc} \ f \)
by (simp add: lessalive-def)

qed

This gives us a partial ordering on the store. Thus, the type \textit{Store} can be added to the appropriate type class \textit{ord} which lets us define the $<$ and \leq symbols, and to the type class \textit{order} which axiomatizes partial orderings.

\textbf{instantiation} \textit{Store :: order}

begin

definition
\textit{le-Store-def}: $s \leq t \iff s \ll t$

definition
\textit{less-Store-def}: ($s::\textit{Store}$) $< t \iff s \leq t \land \neg t \leq s$

We prove Lemma 3.5 of [PH97, p. 56] for this relation.

Lemma 3.5 (i)

\textbf{instance} \textbf{ proof}

\textbf{ fix} \textit{s t w:: Store}

\{\textbf{ show} \textit{s} \leq \textit{s} \textbf{ by} (simp add: le-Store-def lessalive-refl)

\textbf{ next}

\textbf{ assume} \textit{s} \leq \textit{t} \textit{t} \leq \textit{w}

\textbf{ then show} \textit{s} \leq \textit{w}

\textbf{ by} (unfold le-Store-def) (rule lessalive-trans)

\textbf{ next}

\textbf{ assume} \textit{s} \leq \textit{t} \textit{t} \leq \textit{s}

\textbf{ then show} \textit{s} = \textit{t}

\textbf{ by} (unfold le-Store-def) (rule lessalive-antisym)

\textbf{ next}

\textbf{ show} (\textit{s} < \textit{t}) = (\textit{s} \leq \textit{t} \land \neg \textit{t} \leq \textit{s})

\textbf{ by} (simp add: less-Store-def)

\}

\textit{qed}

end

Lemma 3.5 (ii)

\textbf{lemma} \textit{lessalive2}: $[s \ll t; \ alive x s] \Rightarrow \ alive x t$

\textbf{ by} (simp add: lessalive-def xeq-def)

Lemma 3.5 (iii)

\textbf{lemma} \textit{lessalive3}:

\textbf{ assumes} \textit{s-t: s \ll t}

\textbf{ assumes} \textit{alive: alive x s \lor \neg alive x t}

\textbf{ shows} \textit{s \equiv [x] t}

\textbf{proof} (cases alive x s)

\textbf{ case} \textit{True}

\textbf{ with} \textit{s-t show} \ ?\textit{thesis}

\textbf{ by} (simp add: lessalive-def)

\textbf{ next}
case False
note unalive-x-s = this
with alive have unalive-x-t: ¬ alive x t
 by simp
show ?thesis
proof (rule xeqI)
 from False alive show alive x s = alive x t
 by simp
next
fix l assume reach-s-x: s ⊢ l reachable-from x
with unalive-x-s have x: x = ref l
 by (rule ref-reach-unalive)
with unalive-x-s have s @@ l = init (ltype l)
 by simp
also from reach-s-x x have t ⊢ l reachable-from x
 by (auto intro: reach.Immediate unreachable-Null)
with unalive-x-t x have t @@ l = init (ltype l)
 by simp
finally show s @@ l = t @@ l
 by simp
qed

Lemma 3.5 (iv)

lemma lessalive-update [simp, intro]:
 assumes s-t: s ≪ t
 assumes unalive-l: ¬ alive (ref l) t
 shows s ≪ t(l:=x)
proof –
 from unalive-l have t(l:=x) = t
 by simp
 with s-t show ?thesis by simp
qed

lemma Xequ4':
 assumes alive: alive x s
 shows s ≡[x] s(t)
proof –
 from alive have x ≠ new s t
 by auto
 thus ?thesis
 by (rule xeq4)
qed

Lemma 3.5 (v)

lemma lessalive-alloc [simp, intro]: s ≪ s(t)
 by (simp add: lessalive-def Xequ4')

13.7 Reachability of Types from Types

The predicate treach denotes the fact that the first type reaches the second type by stepping finitely many times from a type to the range type of one of its fields. This formalization diverges from [PH97, p. 106] in that it does not include the number of steps that are allowed to reach
the second type. Reachability of types is a static approximation of reachability in the store. If I cannot reach the type of a location from the type of a reference, I cannot reach the location from the reference. See lemma \texttt{not-treach-ref-impl-not-reach} below.

\textbf{inductive}

\texttt{treach} :: \texttt{Javatype} \Rightarrow \texttt{Javatype} \Rightarrow \texttt{bool}

\texttt{where}
\begin{itemize}
 \item \texttt{Subtype}: \quad \texttt{U} \leq \texttt{T} \Rightarrow \texttt{treach} \texttt{T} \texttt{U}
 \item \texttt{Attribute}: \quad \texttt{treach} \texttt{T} \texttt{S} \quad \texttt{S} \leq \texttt{dtype} \texttt{f} \quad \texttt{U} \leq \texttt{rtype} \texttt{f}
 \item \texttt{ArrLength}: \quad \texttt{treach} \texttt{(ArrT AT)} \texttt{IntgT}
 \item \texttt{ArrElem}: \quad \texttt{treach} \texttt{(ArrT AT)} \texttt{at2jt AT}
 \item \texttt{Trans [trans]}: \quad \texttt{treach} \texttt{T} \texttt{U} \quad \texttt{treach} \texttt{U} \texttt{V} \Rightarrow \texttt{treach} \texttt{T} \texttt{V}
\end{itemize}

\textbf{lemma} \texttt{treach-ref-l [simp.intro]}:
\begin{itemize}
 \item \texttt{assumes not-Null}: \texttt{ref l} \neq \texttt{nullV}
 \item \texttt{shows treach (typeof (ref l)) (ltype l)}
\end{itemize}
\texttt{proof (cases l)}
\begin{itemize}
 \item \texttt{case (objLoc cf a)}
 \begin{itemize}
 \item \texttt{have l=objLoc cf a by fact}
 \item \texttt{moreover have treach (CClassT (cls cf)) (rtype (att cf))}
 \begin{itemize}
 \item \texttt{by (rule treach.Attribute [where ?f=att cf and ?S=CClassT (cls cf)])}
 \end{itemize}
 \begin{itemize}
 \item \texttt{(auto intro: treach.Subtype)}
 \end{itemize}
 \end{itemize}
 \end{itemize}
\texttt{ultimately show ?thesis by simp}
\texttt{next}
\begin{itemize}
 \item \texttt{case (staticLoc f)}
 \begin{itemize}
 \item \texttt{have l=staticLoc f by fact}
 \item \texttt{hence ref l = nullV by simp}
 \item \texttt{with not-Null show ?thesis by simp}
 \end{itemize}
 \end{itemize}
\texttt{next}
\begin{itemize}
 \item \texttt{case (arrLenLoc T a)}
 \begin{itemize}
 \item \texttt{have l=arrLenLoc T a by fact}
 \item \texttt{then show ?thesis by (auto intro: treach.ArrLength)}
 \end{itemize}
 \end{itemize}
\texttt{next}
\begin{itemize}
 \item \texttt{case (arrLoc T a i)}
 \begin{itemize}
 \item \texttt{have l=arrLoc T a i by fact}
 \item \texttt{then show ?thesis by (auto intro: treach.ArrElem)}
 \end{itemize}
 \end{itemize}
\texttt{qed}

\textbf{lemma} \texttt{treach-ref-l' [simp.intro]}:
\begin{itemize}
 \item \texttt{assumes not-Null}: \texttt{ref l} \neq \texttt{nullV}
 \item \texttt{shows treach (typeof (ref l)) (typeof (s@@l))}
\end{itemize}
\texttt{proof –}
\begin{itemize}
 \item \texttt{from not-Null have treach (typeof (ref l)) (ltype l) by (rule treach-ref-l)}
 \item \texttt{also have typeof (s@@l) \leq ltype l by simp}
 \item \texttt{hence treach (ltype l) (typeof (s@@l)) by (rule treach.intros)}
 \item \texttt{finally show ?thesis .}
lemma reach-impl-treach:
assumes reach-l: s ⊢ l reachable-from x
shows treach (typeof x) (ltype l)
using reach-l
proof (induct)
 case (Immediate l)
 have ref l ≠ nullV by fact
 then show treach (typeof (ref l)) (ltype l)
 by (rule treach-ref-l)
next
 case (Indirect l k)
 have treach (typeof (s @ k)) (ltype l) by fact
 moreover
 have ref k ≠ nullV by fact
 hence treach (typeof (ref k)) (typeof (s @ k))
 by simp
 ultimately show treach (typeof (ref k)) (ltype l)
 by (iprover intro: treach.Trans)
qed

lemma not-treach-ref-impl-not-reach:
assumes not-treach: ¬ treach (typeof x) (typeof (ref l))
shows ¬ s ⊢ l reachable-from x
proof
 assume reach-l: s ⊢ l reachable-from x
 from this not-treach show False
 proof (induct)
 case (Immediate l)
 have ¬ treach (typeof (ref l)) (typeof (ref l)) by fact
 thus False by (iprover intro: treach.intros order-refl)
 next
 case (Indirect l k)
 have hyp: ¬ treach (typeof (s @ k)) (typeof (ref l)) ⇒ False by fact
 have not-Null: ref k ≠ nullV by fact
 have not-k-l: ¬ treach (typeof (ref k)) (typeof (ref l)) by fact
 show False
 proof (cases treach (typeof (s @ k)) (typeof (ref l)))
 case False thus False by (rule hyp)
 next
 case True
 from not-Null have treach (typeof (ref k)) (typeof (s @ k))
 by (rule treach-ref-l)
 also note True
 finally have treach (typeof (ref k)) (typeof (ref l)) .
 with not-k-l show False..
 qed
 qed
qed

Lemma 4.6 in [PH97, p. 107].
lemma treach1:
 assumes x-t: typeof x ≤ T
 assumes not-treach: ¬ treach T (typeof (ref l))
 shows ¬ s ⊢ l reachable-from x
proof –
 have ¬ treach (typeof x) (typeof (ref l))
proof
 from x-t have treach T (typeof x) by (rule treach.intros)
 also assume treach (typeof x) (typeof (ref l))
 finally have treach T (typeof (ref l)) .
 with not-treach show False ..
qed
thus ?thesis
 by (rule not-treach-ref-impl-not-reach)
qed

end

14 The Formalization of JML Operators

theory JML imports ../Isabelle-Store/StoreProperties begin
JML operators that are to be used in Hoare formulae can be formalized here.
definition instanceof :: Value ⇒ Javatype ⇒ bool (- @instanceof -)
where
instanceof v t = (typeof v ≤ t)
end

15 The Universal Specification

theory UnivSpec imports ../Isabelle/JML begin
This theory contains the Isabelle formalization of the program-dependent specification. This
theory has to be provided by the user. In later versions of Jive, one may be able to generate it
from JML model classes.
definition aCounter :: Value ⇒ Store ⇒ JavaInt where
aCounter x s =
 (if x ≠ nullV & (alive x s) & typeof x = CClassT CounterImpl then
 aI (s@@(x..CounterImpl'value))
 else undefined)
end

References

