Open Induction

Mizuhito Ogawa Christian Sternagel*

September 19, 2015

Abstract

A proof of the open induction schema based on [1].

Contents

1 Open Induction 1
1.1 (Greatest) Lower Bounds and Chains 1
1.2 Open Properties . 3
1.3 Downward Completeness . 3
1.4 The Open Induction Schema 3
1.5 Universal Open Induction Schemas 4
1.6 Type Class of Downward Complete Orders 5

1 Open Induction

theory Open-Induction
imports
 Main
 ../Well-Quasi-Orders/Restricted-Predicates
begin

1.1 (Greatest) Lower Bounds and Chains

A set B has the lower bound x w.r.t. to the order $P::'a ⇒ 'a ⇒ bool$ iff x is less than or equal to every element of B.

definition lb where
 lb P B x ≡ ∀ y∈B. P x y

A set B has the greatest lower bound x (w.r.t. P) iff x is a lower bound and less than or equal to every other lower bound of B.

definition glb where

*The research was partly funded by the Austrian Science Fund (FWF): J3202.
\[
\text{glb } P B x \equiv \text{lb } P B x \land (\forall y. \text{lb } P B y \rightarrow P y x)
\]

A subset \(C \) of \(A \) is a **chain on** \(A \) (w.r.t. \(P \)) iff for all pairs of elements of \(C \), one is less than or equal to the other one.

definition chain-on where
\[
\text{chain-on } P C A \equiv C \subseteq A \land (\forall x \in C. \forall y \in C. P x y \lor P y x)
\]

A chain \(M \) on \(A \) (w.r.t. \(P \)) is a **maximal chain** iff there is no chain on \(A \) that is a superset of \(M \).

definition max-chain-on where
\[
\text{max-chain-on } P M A \equiv \text{chain-on } P M A \land (\forall C. \text{chain-on } P C A \land M \subseteq C \rightarrow M = C)
\]

lemma chain-onI [Pure.intro]:
\[
C \subseteq A \Rightarrow (\exists x y. [x \in C ; y \in C] \Rightarrow P x y \lor P y x) \Rightarrow \text{chain-on } P C A
\]

lemma chain-on-subset:
\[
A \subseteq B \Rightarrow \text{chain-on } P C A \Rightarrow \text{chain-on } P C B
\]

lemma chain-on-imp-subset:
\[
\text{chain-on } P C A \Rightarrow C \subseteq A \text{ by (simp add: chain-on-def)}
\]

lemma chain-on-Union:
\[
\text{assumes } C \in \text{chains } \{ C. \text{chain-on } P C A \} \text{ (is } C \in \text{ chains } ?A) \text{ shows } \text{chain-on } P (\bigcup C) A
\]

proof
from assms have \(C \subseteq ?A \) and

* [rule-format]: \(\forall x \in C. \forall y \in C. x \subseteq y \lor y \subseteq x \)
 by (auto simp: chain-on-def chain-subset-def)

then show \(\bigcup C \subseteq A \) unfolding chain-on-def by blast

fix \(x y \) assume \(x \in \bigcup C \) and \(y \in \bigcup C \)
then obtain \(X Y \)
where \(X \in C \) and \(Y \in C \) and \(x \in X \) and \(y \in Y \) by auto
with \(C \subseteq ?A \) have \(X \subseteq A \) and \(Y \subseteq A \)
and \(\text{chain-on } P X A \) and \(\text{chain-on } P Y A \) unfolding chain-on-def by auto
with \(x \in X \) and \(y \in Y \) show \(P x y \lor P y x \)
using * [OF \(X \in C \), \(Y \in C \)]
unfolding chain-on-def by blast

qed

lemma chain-on-glb:
\[
\text{assumes } \text{go-on } P A
\]
shows \(\text{chain-on } P C A \Rightarrow C \neq \{\} \Rightarrow \text{glb } P C x \Rightarrow x \in A \Rightarrow y \in A \Rightarrow P y x \Rightarrow \text{chain-on } P \{y \cup C\} A
\]
using \(\text{go-on-imp-reflp-on } [\text{OF assms, unfolded reflp-on-def, rule-format, of } y] \)
and \(\text{go-on-imp-transp-on } [\text{OF assms, unfolded transp-on-def}] \)
unfolding chain-on-def glb-def lb-def by blast

2
1.2 Open Properties

definition open-on where

\[
open-on\ P\ Q\ A \equiv \\
\forall\ C.\ chain-on\ P\ C\ A \land C \neq \emptyset \land (\exists x \in A.\ \text{glb} P\ C\ x \land Q\ x) \rightarrow (\exists y \in C.\ Q\ y)
\]

lemma open-on-glb:

\[
\llbracket\ \text{chain-on} P\ C\ A;\ C \neq \emptyset;\ open-on\ P\ Q\ A;\ \forall x \in C.\ \neg Q\ x;\ x \in A;\ \text{glb} P\ C\ x\rrbracket \implies \neg Q\ x
\]

by (auto simp: open-on-def)

lemma max-chain-on-exists:

\[
\exists M.\ max-chain-on\ P\ M\ A
\]

proof

- let \(?S = \{ C.\ chain-on P\ C\ A \} \)
- have \(\bigwedge C.\ C \in \text{chains} ?S \implies \bigcup C \in ?S \)
 using chain-on-Union and chain-on-imp-subset by blast
- with Zorn-Lemma [of \(?S \)]
 obtain \(M \) where \(M \in ?S \) and \(\ast: \forall z \in ?S.\ M \subseteq z \implies z = M \) by blast
- then have \(M \subseteq A \) and \(\text{chain-on} P\ M\ A \) by (auto dest: chain-on-imp-subset)
- moreover \{
 - fix \(C \) assume \(chain-on P\ C\ A \) and \(M \subseteq C \)
 - with \(\ast \) have \(M = C \)
 - using chain-on-imp-subset [OF \(\langle chain-on P\ C\ A \rangle \)]
 - by blast \}
- ultimately show \(?\text{thesis} \) by (auto simp: max-chain-on-def)

qed

1.3 Downward Completeness

An order \(P \) is **downward-complete** on \(A \) iff every non-empty chain on \(A \) has a greatest lower bound in \(A \).

definition dc-on where

\[
dc-on\ P\ A \equiv \forall C.\ chain-on\ P\ C\ A \land C \neq \emptyset \rightarrow (\exists x \in A.\ \text{glb} P\ C\ x)
\]

1.4 The Open Induction Schema

lemma open-induct-on [consumes 4]:

- assumes \(\text{go-on} P\ A \) and \(dc-on\ P\ A \) and \(open-on\ P\ Q\ A \)
- and \(x \in A \)
- and \(\text{ind}: \bigwedge x.\ [x \in A;\ \bigwedge y.\ [y \in A;\ strict P\ y\ x] \implies Q\ y] \implies Q\ x \)
- shows \(Q\ x \)

proof (rule ccontr)

- note refl = qo-on-imp-reflp-on [OF \(\langle qo-on P\ A \rangle \), unfolded reflp-on-def, rule-format]
- assume \(\neg Q\ x \)
- let \(?A = \{ x \in A.\ \neg Q\ x \} \)
- from max-chain-on-exists [of \(P ?A \)] obtain \(M \) where
 chain: \(\text{chain-on} P\ M\ ?A \) and
max: \(\bigwedge C. \) chain-on \(P \ C \ ?A \implies M \subseteq C \implies M = C \) by (auto simp: max-chain-on-def)

from chain have \(M \subseteq ?A \) by (auto simp: chain-on-imp-subset)
show False
proof (cases \(M = \{\} \))
assume \(M = \{\} \)
moreover have chain-on \(P \ \{x\} \ ?A \)
using refl and \(\{x \in A\} \) and \(\neg Q x \) by (simp add: chain-on-def)
ultimately show False using max by blast
next
assume \(M \neq \{\} \)
have \(?A \subseteq A \) by blast
with chain have chain-on \(P \ M A \)
using chain-on-subset by blast
moreover with \(\langle \text{dc-on } PA \rangle \) and \(\langle \{M \neq \{\}\} \rangle \) obtain \(m \) where
\(m \in A \) and \(\text{glb } P M m \)
unfolding dc-on-def by auto
ultimately have \(\neg Q m \) and \(m \in ?A \) using max by blast

1.5 Universal Open Induction Schemas

Open induction on quasi-orders (i.e., preorder).

lemma (in preorder) dc-open-induct [consumes 2]:
assumes \(\langle \text{dc-on } (op \leq) \rangle \ \text{UNIV} \)
and \(\langle \text{open-on } (op \leq) \rangle \ \text{Q \ UNIV} \)
and \(\bigwedge x. (\bigwedge y. y < x \implies Q y) \implies Q x \)
shows \(Q x \)
proof —
have \(\text{go-on } (op \leq) \ \text{UNIV} \)
unfolding \textit{go-on-UNIV-conv}
unfolding \textit{less-le-not-le [symmetric]} ..
moreover have \textit{dc-on (op \leq) UNIV by fact}
ultimately show \(Q \times \)
using \textit{assms and open-induct-on [of \(\text{op} \leq \text{UNIV \ Q} \)]}
unfolding \textit{less-le-not-le by blast}

\textit{qed}

1.6 Type Class of Downward Complete Orders

\textbf{class} \textit{dcorder} = \textit{preorder}
\textbf{assumes} \textit{dc: \[\text{chain-on (op \leq) C \ \text{UNIV}; \ C \neq \{\}] \Rightarrow (\exists x. \text{glb (op \leq) C} \ x)\]}
\textbf{begin}

\textbf{lemma} \textit{dc-on-UNIV}: \textit{dc-on (op \leq) UNIV}
using \textit{dc unfolding} \textit{dc-on-def by blast}

\textbf{Open induction on downward-complete orders.}
\textbf{lemmas} \textit{open-induct [consumes 1]} = \textit{dc-open-induct [OF dc-on-UNIV]}

\textbf{end}
end

\textbf{References}