An Axiomatic Characterization of the Single-Source Shortest Path Problem

By Christine Rizkallah

September 19, 2015

Abstract

This theory is split into two sections. In the first section, we give a formal proof that a well-known axiomatic characterization of the single-source shortest path problem is correct. Namely, we prove that in a directed graph \(G = (V, E) \) with a non-negative cost function on the edges the single-source shortest path function \(\mu : V \to \mathbb{R} \cup \{\infty\} \) is the only function that satisfies a set of four axioms. The first axiom states that the distance from the source vertex \(s \) to itself should be equal to zero. The second states that the distance from \(s \) to a vertex \(v \in V \) should be infinity if and only if there is no path from \(s \) to \(v \). The third axiom is called triangle inequality and states that if there is a path from \(s \) to \(v \), and an edge \((u,v) \in E\), the distance from \(s \) to \(v \) is less than or equal to the distance from \(s \) to \(u \) plus the cost of \((u,v)\). The last axiom is called justification, it states that for every vertex \(v \) other than \(s \), if there is a path \(p \) from \(s \) to \(v \) in \(G \), then there is a predecessor edge \((u,v)\) on \(p \) such that the distance from \(s \) to \(v \) is equal to the distance from \(s \) to \(u \) plus the cost of \((u,v)\).

In the second section, we give a formal proof of the correctness of an axiomatic characterization of the single-source shortest path problem for directed graphs with general cost functions \(c : E \to \mathbb{R} \). The axioms here are more involved because we have to account for potential negative cycles in the graph. The axioms are summarized in the three isabelle locales.

Contents

1 Shortest Path (with non-negative edge costs) 2

2 Shortest Path (with general edge costs) 8

theory ShortestPath
imports
Complex
../Graph-Theory/Graph-Theory
~~~/src/HOL/Library/Extended-Nat
begin
1 Shortest Path (with non-negative edge costs)

The following theory is used in the verification of a certifying algorithm’s checker for shortest path. For more information see [1].

locale basic-sp = 
fin-digraph +
fixes dist :: 'a ⇒ ereal
fixes c :: 'b ⇒ real
fixes s :: 'a
assumes general-source-val: dist s ≤ 0
assumes trian:
\( \forall e. \, e \in \text{arcs } G \quad \Rightarrow \quad \text{dist } (\text{head } G \, e) \leq \text{dist } (\text{tail } G \, e) + c \, e \)

locale basic-just-sp = 
basic-sp +
fixes num :: 'a ⇒ enat
assumes just:
\( \forall v. \, [v \in \text{verts } G; \, v \neq s; \, \text{num } v \neq \infty] \quad \Rightarrow \quad \exists e \in \text{arcs } G. \, v = \text{head } G \, e \land \quad \text{dist } v = \text{dist } (\text{tail } G \, e) + c \, e \land \quad \text{num } v = \text{num } (\text{tail } G \, e) + (\text{enat } 1) \)

locale shortest-path-pos-cost = 
basic-just-sp +
assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path: \( \forall v. \, v \in \text{verts } G \quad \Rightarrow \quad \text{dist } v = \infty \quad \iff \quad \text{num } v = \infty \)
assumes pos-cost: \( \forall e. \, e \in \text{arcs } G \quad \Rightarrow \quad 0 \leq c \, e \)

locale basic-just-sp-pred = 
basic-sp +
fixes num :: 'a ⇒ enat
fixes pred :: 'a ⇒ 'b option
assumes just:
\( \forall v. \, [v \in \text{verts } G; \, v \neq s; \, \text{num } v \neq \infty] \quad \Rightarrow \quad \exists e \in \text{arcs } G. \quad e = \text{the } (\text{pred } v) \land \quad v = \text{head } G \, e \land \quad \text{dist } v = \text{dist } (\text{tail } G \, e) + c \, e \land \quad \text{num } v = \text{num } (\text{tail } G \, e) + (\text{enat } 1) \)

sublocale basic-just-sp-pred ⊆ basic-just-sp
using basic-just-sp-pred-axioms
unfolding basic-just-sp-pred-def
basic-just-sp-pred-axioms-def
by unfold-locales (blast)

locale shortest-path-pos-cost-pred =
basic-just-sp-pred

assumes s-in-G: s ∈ verts G
assumes tail-val: dist s = 0
assumes no-path: \( \forall v. \ v \in \text{verts} \ G \implies \text{dist} \ v = \infty \iff \text{num} \ v = \infty \)
assumes pos-cost: \( \forall e. \ e \in \arcs \ G \implies 0 \leq c e \)

sublocale shortest-path-pos-cost-pred ⊆ shortest-path-pos-cost
using shortest-path-pos-cost-pred-axioms
by unfold-locales
(auto simp: shortest-path-pos-cost-pred-def
 shortest-path-pos-cost-pred-axioms-def)

lemma tail-value-helper:
assumes hd p = last p
assumes distinct p
assumes p ≠ []
shows p = [hd p]
by (metis assms distinct
.simps(2) list.sel(1) neq-Nil-conv last-ConsR last-in-set)

lemma (in basic-sp) dist-le-cost:
fixes v :: 'a
fixes p :: 'b list
assumes awalk s p v
shows dist v ≤ awalk-cost c p
using assms
proof (induct length p arbitrary: p v)
case 0
  hence s = v by auto
  thus ?case using 0(1) general-source-val
     by (metis awalk-cost-Nil length-0-conv zero-ereal-def)
next
case (Suc n)
  then obtain p’ e where p’: p = p’ @ [e]
     by (cases p rule: rev-cases) auto
  then obtain u where ewu: awalk s p’ u ∧ awalk u [e] v
     using awalk-append-iff Suc(3) by simp
  then have du: dist u ≤ereal (awalk-cost c p’)
     using Suc p’ e by simp
  from ewu have ust: u = tail G e and eta: v = head G e
     by auto
  then have dist v ≤ dist u + c e
     using ewu du ust \( \text{trian} \ [\text{where} \ c = e] \) by force
  with du have dist v ≤ereal (awalk-cost c p’) + c e
     by (metis add-right-mono order-trans)
  thus dist v ≤ awalk-cost c p
     using awalk-cost-append p’ e by simp
qed

lemma (in fin-digraph) witness-path:
assumes \( \mu c s v = \text{ereal } r \)
shows \( \exists \ p. \text{apath } s p v \land \mu c s v = \text{awalk-cost } c p \)
proof
have \( sv: s \rightarrow^* v \)
  using \( \text{shortest-path-inf[of } s v c \] \) assms by fastforce
  { 
    fix \( p \) assume \( \text{awalk } s p v \)
    then have no-neg-cyc:
      \( \neg (\exists w q. \text{awalk } w q w \land w \in \text{set } (\text{awalk-verts } s p) \land \text{awalk-cost } c q < 0) \)
      using \( \text{neg-cycle-imp-inf-\mu assms by force} \)
  }
thus \( \neg \text{thesis} \) using \( \text{no-neg-cyc-reach-imp-path[OF } sv \] \) by presburger
qed

lemma (in basic-sp) \( \text{dist-le-\mu:} \)
  fixes \( v :: 'a \)
  assumes \( v \in \text{verts } G \)
  shows \( \text{dist } v \leq \mu c s v \)
proof (rule ccontr)
  assume \( nt: \neg \neg \text{thesis} \)
  show \( \text{False} \)
    proof (cases \( \mu c s v \))
      next
      show \( \mu c s v = \infty \Rightarrow \text{False} \) using \( nt \) by simp
    next
      show \( \mu c s v = -\infty \Rightarrow \text{False} \) using dist-le-cost
    proof
      assume asm: \( \mu c s v = -\infty \)
      let \( ?C = (\lambda x. \text{ereal } (\text{awalk-cost } c x)) \) \( \cdot \) \( \{ p. \text{awalk } s p v \} \)
      have \( \exists x \in ?C. x < \text{dist } v \)
        using \( nt \) unfolding \( \mu \text{-def not-le INF-less-iff} \) by simp
      then obtain \( p \) where
        \( \text{awalk } s p v \)
        \( \text{awalk-cost } c p < \text{dist } v \)
        by force
      thus \( \neg \text{thesis} \) using dist-le-cost by force
    qed
  qed

qed
lemma (in basic-just-sp) dist-ge-μ:
  fixes v :: 'a
  assumes v ∈ verts G
  assumes num v ≠ ∞
  assumes dist v ≠ −∞
  assumes μ c s s = ereal 0
  assumes dist s = 0
  assumes ⋀ u. u∈verts G ⇒ u≠s ⇒
    num u ≠ ∞ ⇒ num u ≠ enat 0
  shows dist v ≥ μ c s v
proof
  obtain n where enat n = num v using assms(2) by force
  thus thesis using assms
proof(induct n arbitrary: v)
case 0 thus ?case by (cases v=s, auto)
next
case (Suc n)
  thus ?case
proof (cases v=s)
case False
  obtain e where e-assms:
    e ∈ arcs G
    v = head G e
    dist v = dist (tail G e) + ereal (c e)
    num v = num (tail G e) + enat 1
    using just[OF Suc(3) False Suc(4)] by blast
  then have nsinf:num (tail G e) ≠ ∞
    by (metis Suc(2) enat.simps(3) enat-1 plus-enat.simps(2))
  then have ns:enat n = num (tail G e)
    using e-assms(4) Suc(2) by force
  have ds: dist (tail G e) = μ c s (tail G e)
    using Suc(1)[OF ns tail-in-verts[OF e-assms(1)] nsinf]
    Suc(5−8) e-assms(3) dist-le-μ[OF tail-in-verts[OF e-assms(1)]]
    by simp
  have dmuc:dist v ≥ μ c s (tail G e) + ereal (c e)
    using e-assms(3) ds by auto
  thus ?thesis
proof (cases dist v = ∞)
case False
  have arc-to-ends G e = (tail G e, v)
    unfolding arc-to-ends-def
    by (simp add: e-assms(2))
  obtain r where μr: μ c s (tail G e) = ereal r
    using e-assms(3) Suc(5) ds False
    by (cases μ c s (tail G e), auto)
  obtain p where
    awalk s p (tail G e) and
\[ \mu \cdot \mu \cdot s \cdot (\text{tail } G \cdot e) = \epsilon \cdot \text{ereal} \cdot (\text{awalk-cost } c \cdot p) \]

using witness-path[OF \( \mu r \)] unfolding apath-def
by blast

then have \( p e : \text{awalk } s \cdot (p @ [e]) \cdot v \)
  using e-assms(1,2) by (auto simp: awalk-simps)

hence \( \mu u : \mu \cdot c \cdot s \cdot v \leq \mu \cdot c \cdot s \cdot (\text{tail } G \cdot e) + \epsilon \cdot \text{ereal } (c \cdot e) \)
  using \( \mu u \cdot \text{min-cost-le-walk-cost}[OF \ p e] \) by simp

thus \( \text{dist } v \geq \mu \cdot c \cdot s \cdot v \) using dmuc by simp
qed simp

qed (simp add: Suc(6,7))

qed

lemma (in shortest-path-pos-cost) tail-value-check:
  fixes \( u : 'a \)
  assumes \( s \in \text{verts } G \)
  shows \( \mu \cdot c \cdot s \cdot s = \epsilon \cdot \text{ereal } 0 \)
proof –
  have \( * : \text{awalk } s \cdot [] \cdot s \) using assms unfolding awalk-def by simp
  hence \( \mu \cdot c \cdot s \cdot s \leq \epsilon \cdot \text{ereal } 0 \) using min-cost-le-walk-cost[OF *] by simp

moreover
  have \( (\forall p. \text{awalk } s \cdot p \cdot s \implies \epsilon \cdot \text{ereal } (\text{awalk-cost } c \cdot p) \geq \epsilon \cdot \text{ereal } 0) \)
  using pos-cost pos-cost-pos-awalk-cost by auto

hence \( \mu \cdot c \cdot s \cdot s \geq \epsilon \cdot \text{ereal } 0 \)
  unfolding \( \mu \cdot \text{def} \) by (blast intro: INF-greatest)

ultimately
  show \( \text{thesis} \) by simp
qed

lemma (in shortest-path-pos-cost) num-not0:
  fixes \( v : 'a \)
  assumes \( v \in \text{verts } G \)
  assumes \( v \neq s \)
  assumes \( \text{num } v \neq \infty \)
  shows \( \text{num } v \neq \text{enat } 0 \)
proof –
  obtain \( k u \) where \( \text{num } v = k u + \text{enat } 1 \)
  using False by force

  using assms just by blast

  thus \( \text{thesis} \) by (induct \( k u \)) auto

qed

lemma (in shortest-path-pos-cost) dist-ne-ninf:
  fixes \( v : 'a \)
  assumes \( v \in \text{verts } G \)
  shows \( \text{dist } v \neq -\infty \)
proof (cases \( \text{num } v = \infty \))
  case False
  obtain \( n \) where \( \text{enat } n = \text{num } v \)
  using False by force

qed
thus \(?thesis\) using \(assms\) False

proof (induct \(n\) arbitrary: \(v\))

case 0 thus \(?case\)
using num-not0 tail-val by (cases \(v\)=s, auto)

next
case (Suc \(n\))
thus \(?case\)
proof (cases \(v\)=s)

case True
thus \(?thesis\) using tail-val by simp

next
case False
obtain \(e\) where \(e\)-assms:
\(e\) \(\in\) arcs \(G\)
\(dist\) \(v\) = \(dist\) (tail \(G\) \(e\)) + \(\text{ereal}\) \((c\) \(e\))
\(num\) \(v\) = \(num\) (tail \(G\) \(e\)) + \(enat\) \(1\)
using just\([OF\ Suc(3)\ False\ Suc(4)]\) by blast
then have nsinf\:\(\text{num}\) (tail \(G\) \(e\)) \(\neq\) \(\infty\)
by (metis Suc\([2]\) enat.simps\([3]\) enat-1 plus-enat-simps\([2]\))
then have ns\:\(\text{enat}\) \(\text{num}\) \(\text{num}\) (tail \(G\) \(e\)) + \(\text{enat}\) \(1\)
using e-assms\([3]\) Suc\([2]\) by force
have dist (tail \(G\) \(e\)) \(\neq\) \(\infty\)
by (rule Suc\([1]\) \([OF\ ns\ tail-in-verts[OF\ e-assms(1)]\ nsinf]\))
thus \(?thesis\) using e-assms\([2]\) by simp

qed

next
case True
thus \(?thesis\) using \(\text{no-path}[OF\ assms]\) by simp

qed

end
2 Shortest Path (with general edge costs)

locale shortest-paths-locale-step1 =
fixes $G :: (\text{a}', \text{b})$ pre-digraph (structure)
fixes $s :: \text{a}'$
fixes $c :: \text{b} \Rightarrow \text{real}$
fixes $\text{num} :: \text{a}' \Rightarrow \text{nat}$
fixes $\text{parent-edge} :: \text{a} \Rightarrow \text{b} \Rightarrow \text{option}$
fixes $\text{dist} :: \text{a} \Rightarrow \text{ereal}$
assumes $\text{graphG} :: \text{fin-digraph G}$
assumes $s\text{-assms}$:
$s \in \text{verts G}$
dist $s \neq \infty$
parent-edge $s = \text{None}$
num $s = 0$
assumes $\text{parent-num-assms}$:
$\forall v. [v \in \text{verts G}; v \neq s; \text{dist} v \neq \infty] \implies$
$(\exists e \in \text{arcs G}. \text{parent-edge} v = \text{Some } e \land$
head $G e = v \land \text{dist} (\text{tail} G e) \neq \infty \land$
num $v = \text{num} (\text{tail} G e) + 1)$
assumes $\text{noPedge}$:
$\forall e. e \in \text{arcs G} \implies$
dist (tail $G e$) $\neq \infty \implies \text{dist} (\text{head} G e) \neq \infty$

sublocale shortest-paths-locale-step1 $\subseteq \text{fin-digraph G}$
using $\text{graphG}$ by auto

definition (in shortest-paths-locale-step1) $\text{enum} :: \text{a}' \Rightarrow \text{enat}$ where
$\text{enum} v = (\text{if } (\text{dist} v = \infty \lor \text{dist} v = -\infty) \text{ then } \infty \text{ else num } v)$

locale shortest-paths-locale-step2 =
shortest-paths-locale-step1 +
basic-just-sp $G$ dist $c$ $s$ enum +
assumes $\text{source-val}$:
$(\exists v \in \text{verts G}. \text{enum} v \neq \infty) \implies \text{dist} s = 0$
assumes $\text{no-edge-Vm-Vf}$:
$\forall e. e \in \text{arcs G} \implies \text{dist} (\text{tail} G e) = -\infty \implies \forall r. \text{dist} (\text{head} G e) \neq \text{ereal } r$

function (in shortest-paths-locale-step1) $\text{pwalk} :: \text{a} \Rightarrow \text{b} \Rightarrow \text{list}$ where
$pwalk v =$
$(\text{if } (v = s \lor \text{dist} v = \infty \lor v \notin \text{verts G})$
then $[]$
else $\text{pwalk} (\text{tail} G (\text{the} (\text{parent-edge} v))) \circ \text{[the} (\text{parent-edge} v)]$
by auto
termination (in shortest-paths-locale-step1)
  using parent-num-assms
  by (relation measure num, auto, fastforce)

lemma (in shortest-paths-locale-step1) pwalk-simps:
  v = s ∨ dist v = ∞ ∨ v ∉ verts G ⇒ pwalk v = []
  v ≠ s ⇒ dist v ≠ ∞ ⇒ v ∈ verts G ⇒
  pwalk v = pwalk (tail G (the (parent-edge v))) @ [the (parent-edge v)]
by auto

definition (in shortest-paths-locale-step1) pwalk-verts :: 'a set where
  pwalk-verts v = {u. u ∈ set (awalk-verts s (pwalk v))}

locale shortest-paths-locale-step3 =
  shortest-paths-locale-step2 +
fixes C :: ('a × (′a awalk)) set
assumes C-sc:
  C ⊆ { (u, p). dist u ≠ ∞ ∧ awalk u p ∧ awalk-cost c p < 0 }
assumes int-neg-cyc:
  ∀v. v ∈ verts G ⇒ dist v = −∞ ⇒
  (fst ' C) ∩ pwalk-verts v ≠ {}

locale shortest-paths-locale-step2-pred =
  shortest-paths-locale-step1 +
fixes pred :: 'a ⇒ 'b option
assumes bj: basic-just-sp-pred G dist c s enum pred
assumes source-val: (∃v ∈ verts G. enum v ≠ ∞) ⇒ dist s = 0
assumes no-edge-Vm-Vf:
  ∀e. e ∈ arcs G ⇒ dist (tail G e) = −∞ ⇒ ∀r. dist (head G e) ≠ ereal r

lemma (in shortest-paths-locale-step1) num-s-is-min:
  assumes v ∈ verts G
  assumes v ≠ s
  assumes dist v ≠ ∞
  shows num v > 0
  using parent-num-assms[OF assms] by fastforce

lemma (in shortest-paths-locale-step1) path-from-root-Vr-ex:
  fixes v :: 'a
  assumes v ∈ verts G
  assumes v ≠ s
  assumes dist v ≠ ∞
  shows ∃e. s →∗ tail G e ∧
  e ∈ arcs G ∧ head G e = v ∧ dist (tail G e) ≠ ∞ ∧
  parent-edge v = Some e ∧ num v = num (tail G e) + 1

9
using \texttt{assms}

\textbf{proof} (\texttt{induct num v \textasciitilde 1 arbitrary : v})

\texttt{case 0}

\texttt{obtain e where ee:
  e \in arcs G head G e = v dist (tail G e) \neq \infty
  parent-edge v = \texttt{Some e num v = num (tail G e) + 1
  using parent-num-assms[OF 0(2\textasciitilde4)] by fast
}

\texttt{have tail G e = s
  using num-s-is-min[OF tail-in-verts [OF ee(1)] - ee(3)]
  ee(5) 0(1) by auto
}

\texttt{then show ?case using ee by auto}

\texttt{next}

\texttt{case (Suc n')}

\texttt{obtain e where ee:
  e \in arcs G head G e = v dist (tail G e) \neq \infty
  parent-edge v = \texttt{Some e num v = num (tail G e) + 1
  using parent-num-assms[OF Suc(3\textasciitilde5)] by fast
}

\texttt{then have ss: tail G e \neq s
  using num-s-is-min tail-in-verts
  Suc(2) s-assms(4) by force
}

\texttt{have nst: n' = num (tail G e) \textasciicircum 1
  using ee(5) Suc(2) by presburger
}

\texttt{obtain e' where reach: s \rightarrow^* tail G e' and
  e': e' \in arcs G head G e' = tail G e dist (tail G e') \neq \infty
  using Suc(1)[OF nst tail-in-verts[OF ee(1)] ss ee(3)] by blast
}

\texttt{then have s \rightarrow^* tail G e
  by (metis arc-implies-awalk reachable-awalk reachable-trans)
}

\texttt{then show ?case using e' ee by auto}

\texttt{qed}

\textbf{lemma (in shortest-paths-locale-step1) path-from-root-Vr:}

\texttt{fixes v :: 'a
  assumes v \in verts G
  assumes dist v \neq \infty
  shows s \rightarrow^* v
}

\textbf{proof(cases v = s)}

\texttt{case True thus \texttt{thesis using assms by simp
}

\texttt{next}

\texttt{case False}

\texttt{obtain e where s \rightarrow^* tail G e e \in arcs G head G e = v
  using path-from-root-Vr-ex[OF assms(1) False assms(2)] by blast
}

\texttt{then have s \rightarrow^* tail G e tail G e \rightarrow v
  by (auto intro: in-arcs-imp-in-arcs-ends
}

\texttt{then show \texttt{thesis by (rule reachable-adj-trans)
}

\texttt{qed}

\textbf{lemma (in shortest-paths-locale-step1) \mu-V-less-inf:}

\texttt{fixes v :: 'a
  assumes v \in verts G}
assumes \( \text{dist } v \neq \infty \)
shows \( \mu \ c \ s \ v \neq \infty \)
using \( \text{assms } \text{path-from-root-Vr } \mu\text{-reach-conv } \text{by force} \)

lemma (in shortest-paths-locale-step2) \text{enum-not0}:
assumes \( v \in \text{verts } G \)
assumes \( v \neq s \)
assumes \( \text{enum } v \neq \infty \)
shows \( \text{enum } v \neq \text{enat } 0 \)
using \( \text{parent-num-assms} \)[OF \( \text{assms} \)] \( \text{assms } \text{unfolding } \text{enum-def } \text{by } \text{auto} \)

lemma (in shortest-paths-locale-step2) \text{dist-Vf-}\( \mu \):
fixes \( v :: 'a \)
assumes \( vG : v \in \text{verts } G \)
assumes \( \exists r \cdot \text{dist } v = \text{ereal } r \)
shows \( \text{dist } v = \mu \ c \ s \ v \)
proof −
have \( \text{ds: } \text{dist } s = 0 \)
using \( \text{assms source-val } \text{unfolding } \text{enum-def } \text{by force} \)
have \( \text{ews:awalk s }[] \ s \)
using \( \text{s-assms(1)} \) unfolding \( \text{awalk-def } \text{by simp} \)
have \( \text{mu: } \mu \ c \ s \ s = \text{ereal } 0 \)
using \( \text{min-cost-le-walk-cost}[OF \text{ews, where } c=c] \)
awalk-cost-nil \( \text{ds dist-le-}\mu[\text{OF } \text{s-assms}(1)] \) zero-ereal-def
by simp
thus \( \text{thesis} \)
using \( \text{ds assms dist-le-}\mu[\text{OF } vG] \)
dist-ge-\( \mu[\text{OF } vG - - \text{mu ds enum-not0}] \)
unfolding \( \text{enum-def } \text{by fastforce} \)

qed

lemma (in shortest-paths-locale-step1) \text{pwalk-awalk}:
fixes \( v :: 'a \)
assumes \( v \in \text{verts } G \)
assumes \( \text{dist } v \neq \infty \)
shows \( \text{awalk s (pwalk } v \text{)} \ v \)
proof (cases \( v=s \))
case True
thus \( \text{thesis} \)
using \( \text{assms } \text{pwalk.simps}[\text{where } v=v] \)
awalk-nil-iff by presburger
next
case False
from \( \text{assms } \text{show } \text{thesis} \)
proof (induct rule: \( \text{pwalk.induct} \))
fix \( v \)
let \( ?e = \text{the (parent-edge } v \text{)} \)
let \( ?u = \text{tail } G \ ?e \)
assume \( \text{euw: } \neg (v = s \lor \text{dist } v = \infty \lor v \notin \text{verts } G) \implies \)
Lemma (in shortest-paths-locale-step3) µ-ninf:
\[ \mu c s v = -\infty \]

Proof:

1. \( \exists u \in \text{verts } G \implies \text{dist } \exists u \neq \infty \implies \text{awalk } (\text{pwalk } \exists u) \exists u \)

2. Assume \( v \in \text{verts } G \)
3. Assume \( d_v \text{ dist } v \neq \infty \)
4. Thus \( \text{awalk } (\text{pwalk } v) \)

Proof (cases \( v = s \lor \text{dist } v = \infty \lor v \notin \text{verts } G \))

Case True

   Thus \( ?\text{thesis} \)

   Using \( \text{pwalk.} \text{simps } v G d_v \)

   awalk-Nil-iff by fastforce

Next

Case False

Obtain \( e \) where \( ee \):

\( e \in \text{arcs } G \)

parent-edge \( v = \text{Some } e \)

head \( G e = v \)

\( \text{dist } (\text{tail } G e) \neq \infty \)

Using parent-num-assms False by blast

Hence \( \text{awalk } (\text{pwalk } \exists u) \exists u \)

Using \( \text{exv[OF False] tail-in-verts by simp } \)

Hence \( \text{awalk } (\text{pwalk } (\text{tail } G e) \circ [e]) \)

Using \( ee(1-3) v G \)

By (auto simp: awalk-simps simp del: pwalk.\text{simps})

Also have \( \text{pwalk } (\text{tail } G e) \circ [e] = \text{pwalk } v \)

Using False \( ee(2) \) unfolding pwalk.\text{simps}[where \( v=v \)] by auto

Finally show ?\text{thesis} .

qed

qed

Lemma (in shortest-paths-locale-step3) µ-ninf:

\[ \mu c s v = -\infty \]

Proof:

1. Obtain \( \exists u \) where \( uu \):

\( e \in \text{arcs } G \)

parent-edge \( v = \text{Some } e \)

head \( G e = v \)

\( \text{dist } (\text{tail } G e) \neq \infty \)

Using parent-num-assms False by blast

Hence \( \text{awalk } (\text{pwalk } \exists u) \exists u \)

Using \( \text{exv[OF False] tail-in-verts by simp } \)

Hence \( \text{awalk } (\text{pwalk } (\text{tail } G e) \circ [e]) \)

Using \( ee(1-3) v G \)

By (auto simp: awalk-simps simp del: pwalk.\text{simps})

Also have \( \text{pwalk } (\text{tail } G e) \circ [e] = \text{pwalk } v \)

Using False \( ee(2) \) unfolding pwalk.\text{simps}[where \( v=v \)] by auto

Finally show ?\text{thesis} .

qed

qed

lemma (in shortest-paths-locale-step3) µ-ninf:

\[ \mu c s v = -\infty \]

Proof:

1. Obtain \( \exists u \) where \( uu \):

\( e \in \text{arcs } G \)

parent-edge \( v = \text{Some } e \)

head \( G e = v \)

\( \text{dist } (\text{tail } G e) \neq \infty \)

Using parent-num-assms False by blast

Hence \( \text{awalk } (\text{pwalk } \exists u) \exists u \)

Using \( \text{exv[OF False] tail-in-verts by simp } \)

Hence \( \text{awalk } (\text{pwalk } (\text{tail } G e) \circ [e]) \)

Using \( ee(1-3) v G \)

By (auto simp: awalk-simps simp del: pwalk.\text{simps})

Also have \( \text{pwalk } (\text{tail } G e) \circ [e] = \text{pwalk } v \)

Using False \( ee(2) \) unfolding pwalk.\text{simps}[where \( v=v \)] by auto

Finally show ?\text{thesis} .

qed

qed
show ?thesis using neg-cycle-imp-inf-\( \mu \) by force

qed

lemma (in shortest-paths-locale-step3) correct-shortest-path:
  fixes v :: 'a
  assumes v \in verts G
  shows dist v = \( \mu \) c s v
proof (cases dist v)
  show \( \forall r. \ dist v = ereal r \implies dist v = \mu \) c s v
    using dist-Vf-\( \mu \)[OF assms] by simp
  next
  show dist v = \( \infty \) \implies dist v = \( \mu \) c s v
    using \( \mu \)-V-less-inf[OF assms]
    dist-le-\( \mu \)[OF assms] by simp
  next
  show dist v = \( -\infty \) \implies dist v = \( \mu \) c s v
    using \( \mu \)-ninf[OF assms] by simp
qed

end

References