Haskell’s Show-Class in Isabelle/HOL*

Christian Sternagel René Thiemann

September 19, 2015

Abstract

We implemented a type-class for pretty-printing, similar to Haskell’s Show-class [1]. Moreover, we provide instantiations for Isabelle/HOL’s standard types like \mathbb{B}, prod, sum, \mathbb{N}, \mathbb{Z}, and \mathbb{Q}. It is further possible, to automatically derive “to-string” functions for arbitrary user defined datatypes similar to Haskell’s “deriving Show”.

Contents

1 Converting Arbitrary Values to Readable Strings 1
 1.1 The Show-Law ... 2
 1.2 Show-Functions for Characters and Strings 4

2 Instances of the Show Class for Standard Types 6

1 Converting Arbitrary Values to Readable Strings

A type class similar to Haskell’s Show class, allowing for constant-time concatenation of strings using function composition.

theory Show
imports
 Main
 /Deriving/Generator-Aux
 /Deriving/Derive-Manager
begin

type-synonym
 shows = string ⇒ string
— show-functions with precedence

type-synonym
 'a showsp = nat ⇒ 'a ⇒ shows

*This research is supported by FWF (Austrian Science Fund) projects J3202 and P22767.
1.1 The Show-Law

The "show law", \(\text{shows-prec} \ p \ x \ (r \ @ \ s) = \text{shows-prec} \ p \ x \ r \ @ \ s \), states that show-functions do not temper with or depend on output produced so far.

named-theorems show-law-simps (simplification rules for proving the show law)
named-theorems show-law-intros (introduction rules for proving the show law)

definition show-law :: 'a showsp \Rightarrow 'a \Rightarrow bool
where
\[\text{show-law} \ s \ x \leftarrow (\forall \ p \ y \ z. \ s \ p \ x \ (y \ @ \ z) = s \ p \ x \ y \ @ \ z)\]

lemma show-lawI:
\[(\forall p y z. s p x (y @ z) = s p x y @ z) \Longrightarrow \text{show-law} \ s \ x \]
\[\langle \text{proof}\rangle\]

lemma show-lawE:
\[\text{show-law} \ s \ x \Longrightarrow (s p x (y @ z) = s p x y @ z \Longrightarrow P) \Longrightarrow P \]
\[\langle \text{proof} \rangle\]

lemma show-lawD:
\[\text{show-law} \ s \ x \Longrightarrow s p x (y @ z) = s p x y @ z \]
\[\langle \text{proof}\rangle\]

class show =
 fixes shows-prec :: 'a showsp
 and shows-list :: 'a list \Rightarrow shows
 assumes shows-prec-append [show-law-simps]: \text{shows-prec} \ p \ x \ (r \ @ \ s) = \text{shows-prec} \ p \ x \ r \ @ \ s
 and
 shows-list-append [show-law-simps]: \text{shows-list} \ xs \ (r \ @ \ s) = \text{shows-list} \ xs \ r \ @ \ s
begin

abbreviation shows x ≡ \text{shows-prec} \ 0 \ x
abbreviation show x ≡ shows x """

end

Convert a string to a show-function that simply prepends the string unchanged.

definition shows-string :: string \Rightarrow shows
where
\[\text{shows-string} = \text{op} \ @ \]

lemma shows-string-append [show-law-simps]:
\[\text{shows-string} \ x \ (r \ @ \ s) = \text{shows-string} \ x \ r \ @ \ s \]
\[\langle \text{proof}\rangle\]

fun shows-sep :: ('a \Rightarrow shows) \Rightarrow shows \Rightarrow 'a list \Rightarrow shows
where
\[\text{shows-sep} \ s \ sep \ [] = \text{shows-string} """

\]

2
shows-sep s sep [x] = s x |
shows-sep s sep (x#xs) = s x o sep o shows-sep s sep xs

lemma shows-sep-append [show-law-simps]:
assumes ∀ r s. ∀ x ∈ set xs. showsx x (r @ s) = showsx x r @ s
and ∀ r s. sep (r @ s) = sep r @ s
shows shows-sep showsx sep xs (r @ s) = shows-sep showsx sep xs r @ s
⟨proof⟩

lemma shows-sep-map:
shows-sep f sep (map g xs) = shows-sep (f o g) sep xs
⟨proof⟩

definition shows-list-gen :: ('a ⇒ shows) ⇒ string ⇒ string ⇒ string ⇒ string ⇒ 'a list ⇒ shows
where
shows-list-gen showsx e l sep r xs =
(if xs = [] then shows-string e
else shows-string l o shows-sep showsx (shows-string s) xs o shows-string r)

lemma shows-list-gen-append [show-law-simps]:
assumes ∀ r s. ∀ x ∈ set xs. showsx x (r @ s) = showsx x r @ s
shows shows-list-gen showsx e l sep r xs (s @ t) = shows-list-gen showsx e l sep r xs s @ t
⟨proof⟩

lemma shows-list-gen-map:
shows-list-gen f e l sep r (map g xs) = shows-list-gen (f o g) e l sep r xs
⟨proof⟩

definition pshowsp-list :: nat ⇒ shows list ⇒ shows
where
pshowsp-list p xs = shows-list-gen id "['']" "['']" "['']" "['']" xs

definition shows-list :: 'a shows ⇒ nat ⇒ 'a list ⇒ shows
where
[code del]: shows-list s p = pshowsp-list p o map (s 0)

lemma shows-list-code [code]:
shows-list s p xs = shows-list-gen (s 0) "['']" "['']" "['']" "['']" xs
⟨proof⟩

lemma show-law-list [show-law-intros]:
(∀ x. x ∈ set xs ⇒ show-law s x) ⇒ show-law (shows-list s) xs
⟨proof⟩

lemma shows-list-append [show-law-simps]:
(∀ p y z. ∀ x ∈ set xs. s p x (y @ z) = s p x y @ z) ⇒
1.2 Show-Functions for Characters and Strings

instantiation

char :: show

begin

definition shows-prec p (c::char) = op # c

definition shows-list (cs::string) = shows-string cs

instance

(⟨proof⟩)

end

definition shows-nl = shows (CHR ‘←’)

definition shows-space = shows (CHR ‘’)

definition shows-paren s = shows (CHR ‘’ o s o shows (CHR ‘’))

definition shows-quote s = shows (Char Nibble2 Nibble7) o s o shows (Char Nibble2 Nibble7)

abbreviation apply-if b s ≡ (if b then s else id) — conditional function application

Parenthesize only if precedence is greater than 0.

definition shows-pl (p::nat) = apply-if (p > 0) (shows (CHR ‘’))

definition shows-pr (p::nat) = apply-if (p > 0) (shows (CHR ‘’))

lemma

shows-nl-append [show-law-simps]: shows-nl (x @ y) = shows-nl x @ y and

shows-space-append [show-law-simps]: shows-space (x @ y) = shows-space x @ y

and

shows-paren-append [show-law-simps]:

(\(\forall x y. s (x @ y) = s x @ y\) \implies shows-paren s (x @ y) = shows-paren s x @ y)

and

shows-quote-append [show-law-simps]:

(\(\forall x y. s (x @ y) = s x @ y\) \implies shows-quote s (x @ y) = shows-quote s x @ y)

and

shows-pl-append [show-law-simps]: shows-pl p (x @ y) = shows-pl p x @ y and

shows-pr-append [show-law-simps]: shows-pr p (x @ y) = shows-pr p x @ y

⟨proof⟩

lemma o-append:

(\(\forall x y. f (x @ y) = f x @ y\) \implies g (x @ y) = g x @ y \implies (f o g) (x @ y) = (f o g) x @ y)

⟨proof⟩

⟨ML⟩

instantiation

list :: (show) show

begin

definition shows-prec (p :: nat) (xs :: 'a list) = shows-list xs
definition shows-list (xss :: 'a list list) = showsp-list shows-prec 0 xss

instance
 ⟨proof⟩
end

definition shows-lines :: 'a::show list ⇒ shows
where
 shows-lines = shows-sep shows shows-nl
definition shows-many :: 'a::show list ⇒ shows
where
 shows-many = shows-sep shows id
definition shows-words :: 'a::show list ⇒ shows
where
 shows-words = shows-sep shows shows-space

lemma shows-lines-append [show-law-simps]:
 shows-lines xs (r @ s) = shows-lines xs r @ s
 ⟨proof⟩

lemma shows-many-append [show-law-simps]:
 shows-many xs (r @ s) = shows-many xs r @ s
 ⟨proof⟩

lemma shows-words-append [show-law-simps]:
 shows-words xs (r @ s) = shows-words xs r @ s
 ⟨proof⟩

lemma shows-foldr-append [show-law-simps]:
 assumes ∀ r s. ∀ x ∈ set xs. showx x (r @ s) = showx x r @ s
 shows foldr showx xs (r @ s) = foldr showx xs r @ s
 ⟨proof⟩

lemma shows-sep-cong [fundef-cong]:
 assumes xs = ys and ∀ x. x ∈ set ys ⇒ f x = g x
 shows shows-sep f sep xs = shows-sep g sep ys
 ⟨proof⟩

lemma shows-list-gen-cong [fundef-cong]:
 assumes xs = ys and ∀ x. x ∈ set ys ⇒ f x = g x
 shows shows-list-gen f e l sep r xs = shows-list-gen g e l sep r ys
 ⟨proof⟩

lemma showsp-list-cong [fundef-cong]:
 xs = ys ⇒ p = q ⇒
\((\forall p \cdot x \in \text{set } ys \implies f \, p \, x = g \, p \, x) \implies \text{showsp-list } f \, p \, xs = \text{showsp-list } g \, q \, ys \) (proof)

abbreviation (input) shows-cons :: string \(\Rightarrow\) shows \(\Rightarrow\) shows (infixr \(\#+\) 10)
where
\(s \, +\#\ + \, p \equiv \text{shows-string } s \circ p \)

abbreviation (input) shows-append :: shows \(\Rightarrow\) shows \(\Rightarrow\) shows (infixr \(\oplus\) 10)
where
\(s \, +\oplus\ + \, p \equiv s \circ p \)

Don’t use Haskell’s existing ”Show” class for code-generation, since it is not compatible to the formalized class.

code-reserved Haskell Show

2 Instances of the Show Class for Standard Types

theory Show-Instances

imports
 Show
 ~~/src/HOL/Rat

begin

definition showsp-unit :: unit showsp
where
showsp-unit \(p \, x \equiv \text{shows-string } "()" \)

lemma show-law-unit [show-law-intros]:
 show-law showsp-unit \(x \)
(proof)

abbreviation showsp-char :: char showsp
where
showsp-char \(\equiv \text{shows-prec} \)

lemma show-law-char [show-law-intros]:
 show-law showsp-char \(x \)
(proof)

primrec showsp-bool :: bool showsp
where
showsp-bool \(p \, \text{True} = \text{shows-string } "True" \)
showsp-bool \(p \, \text{False} = \text{shows-string } "False" \)

lemma show-law-bool [show-law-intros]:
 show-law showsp-bool \(x \)
(proof)
primrec pshowsp-prod :: (shows × shows) → shows
where
 pshowsp-prod p (x, y) = shows-string "(" o x o shows-string "," o y o shows-string ")"

definition showsp-prod :: 'a showsp ⇒ 'b showsp ⇒ ('a × 'b) showsp
where
 [code del]: showsp-prod s1 s2 p = pshowsp-prod p o map-prod (s1 0) (s2 0)

lemma showsp-prod-simps [simp, code]:
 showsp-prod s1 s2 p (x, y) =
 shows-string "(" o s1 0 x o shows-string "," o s2 0 y o shows-string ")"
⟨proof⟩

lemma show-law-prod [show-law-intros]:
 (∀x. x ∈ Basic-BNFs. fsts y ⇒ show-law s1 x) ⇒
 (∀x. x ∈ Basic-BNFs. snds y ⇒ show-law s2 x) ⇒
 show-law (showsp-prod s1 s2) y
⟨proof⟩

fun string-of-digit :: nat ⇒ string
where
 string-of-digit n =
 (if n = 0 then "0"
 else if n = 1 then "1"
 else if n = 2 then "2"
 else if n = 3 then "3"
 else if n = 4 then "4"
 else if n = 5 then "5"
 else if n = 6 then "6"
 else if n = 7 then "7"
 else if n = 8 then "8"
 else "9")

fun showsp-nat :: nat → shows
where
 showsp-nat p n =
 (if n < 10 then shows-string (string-of-digit n)
 else showsp-nat p (n div 10) o shows-string (string-of-digit (n mod 10)))
declare showsp-nat.simps [simp del]

lemma show-law-nat [show-law-intros]:
 show-law showsp-nat n
⟨proof⟩

lemma showsp-nat-append [show-law-simps]:
 showsp-nat p n (x ⊕ y) = showsp-nat p n x ⊕ y
⟨proof⟩
definition showsp-int :: int showsp
where
showsp-int p i =
(if i < 0 then shows-string "−" o showsp-nat p (nat (− i)) else showsp-nat p (nat i))

lemma show-law-int [show-law-intros]:
show-law showsp-int i
⟨proof⟩

lemma showsp-int-append [show-law-simps]:
showsp-int p i (x @ y) = showsp-int p i x @ y
⟨proof⟩

definition showsp-rat :: rat showsp
where
showsp-rat p x =
(case quotient-of x of (d, n) ⇒
if n = 1 then showsp-int p d else showsp-int p d o shows-string "/" o showsp-int p n)

lemma show-law-rat [show-law-intros]:
show-law showsp-rat r
⟨proof⟩

lemma showsp-rat-append [show-law-simps]:
showsp-rat p r (x @ y) = showsp-rat p r x @ y
⟨proof⟩

Automatic show functions are not used for unit, prod, and numbers: for unit and prod, we do not want to display "Unity" and "Pair"; for nat, we do not want to display "Suc (Suc (... (Suc 0) ...))"; and neither int nor rat are datatypes.

⟨ML⟩

derive show option sum prod unit bool nat int rat

export-code
shows-prec :: 'a::show option showsp
shows-prec :: ('a::show, 'b::show) sum showsp
shows-prec :: ('a::show × 'b::show) showsp
shows-prec :: unit showsp
shows-prec :: char showsp
shows-prec :: bool showsp
shows-prec :: nat showsp
shows-prec :: int showsp
shows-prec :: rat showsp

checking
References