Based on Isabelle/HOL’s type class for preorders, we introduce a
type class for well-quasi-orders (wqo) which is characterized by the
absence of “bad” sequences (our proofs are along the lines of the proof
of Nash-Williams [1], from which we also borrow terminology). Our
main results are instantiations for the product type, the list type, and
a type of finite trees, which (almost) directly follow from our proofs
of (1) Dickson’s Lemma, (2) Higman’s Lemma, and (3) Kruskal’s Tree
Theorem. More concretely:
1. If the sets A and B are wqo then their Cartesian product is wqo.
2. If the set A is wqo then the set of finite lists over A is wqo.
3. If the set A is wqo then the set of finite trees over A is wqo.

Contents

1 Binary Predicates Restricted to Elements of a Given Set 2
1.1 Measures on Sets (Instead of Full Types) 9
1.2 Facts About Predecessor Sets 15

2 Constructing Minimal Bad Sequences 16

3 Enumerations of Well-Ordered Sets in Increasing Order 21

4 Almost-Full Relations 23
4.1 Basic Definitions and Facts 23
4.2 Adding a Bottom Element to a Set 27
4.3 Adding a Bottom Element to an Almost-Full Set 27
4.4 Disjoint Union of Almost-Full Sets 28
4.5 Dickson’s Lemma for Almost-Full Relations 30
4.6 Higman’s Lemma for Almost-Full Relations 30
4.7 Special Case: Finite Sets . 33
4.8 Natural Numbers . 33
4.9 Further Results . 34

*The research was funded by the Austrian Science Fund (FWF): J3202.
5 Well-Quasi-Orders 36
5.1 Basic Definitions 37
5.2 Equivalent Definitions 37
5.3 A Type Class for Well-Quasi-Orders 39
5.4 Dickson’s Lemma 40
5.5 Higman’s Lemma 41

6 Kruskal’s Tree Theorem 43

7 Instances of Well-Quasi-Orders 49
7.1 The Option Type is Well-Quasi-Ordered 50
7.2 The Sum Type is Well-Quasi-Ordered 50
7.3 Pairs are Well-Quasi-Ordered 50
7.4 Lists are Well-Quasi-Ordered 50

8 Multiset Extension of Orders (as Binary Predicates) 51

9 Multiset Extension Preserves Well-Quasi-Orders 63

1 Binary Predicates Restricted to Elements of a Given Set

theory Restricted-Predicates
imports Main
begin

definition restrict-to :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ (′a ⇒ ′a ⇒ bool) where
 restrict-to P A = (λx y. x ∈ A ∧ y ∈ A ∧ P x y)

definition reflp-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool where
 reflp-on P A ←→ (∀a∈A. P a a)

definition transp-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool where
 transp-on P A ←→ (∀x∈A. ∀y∈A. ∀z∈A. P x y ∧ P y z → P x z)

definition total-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool where
 total-on P A ←→ (∀x∈A. ∀y∈A. x = y ∨ P x y ∨ P y x)

abbreviation strict P ≡ λx y. P x y ∧ ¬(P y x)

abbreviation chain-on P f A ≡ ∀i. f i ∈ A ∧ P (f i) (f (Suc i))

abbreviation incomparable P ≡ λx y. ¬P x y ∧ ¬P y x

abbreviation antichain-on P f A ≡ ∀(i::nat) j. f i ∈ A ∧ (i < j → incomparable P (f i) (f j))
lemma strict-reflclp-conv [simp]:
strict \((P^=)\) = strict P by auto

lemma reflp-onI [Pure.intro]:
\((\forall a. a \in A \Rightarrow P a a) \Rightarrow \text{reflp-on } P A\)
unfolding reflp-on-def by blast

lemma transp-onI [Pure.intro]:
\((\forall x y z. [x \in A; y \in A; z \in A; P x y; P y z] \Rightarrow P x z) \Rightarrow \text{transp-on } P A\)
unfolding transp-on-def by blast

lemma total-onI [Pure.intro]:
\((\forall x y. [x \in A; y \in A] \Rightarrow x = y \lor P x y \lor P y x) \Rightarrow \text{total-on } P A\)
unfolding total-on-def by blast

lemma reflp-on-reflclp-simp [simp]:
assumes reflp-on P A and a \in A and b \in A
shows P\(^=\) a b = P a b
using assms by (auto simp: reflp-on-def)

lemma reflp-on-reflclp:
reflp-on \((P^=)\) A
by (auto simp: reflp-on-def)

lemma reflp-on-converse-simp [simp]:
reflp-on P\(^{-1}\) A \longleftrightarrow reflp-on P A
by (auto simp: reflp-on-def)

lemma transp-on-converse:
transp-on P A \Rightarrow transp-on P\(^{-1}\) A
unfolding transp-on-def by blast

lemma transp-on-converse-simp [simp]:
transp-on P\(^{-1}\) A \longleftrightarrow transp-on P A
unfolding transp-on-def by blast

lemma transp-on-reflclp:
transp-on P A \Rightarrow transp-on \((P^=)\) A
unfolding transp-on-def by blast

lemma transp-on-strict:
transp-on P A \Rightarrow transp-on (strict P) A
unfolding transp-on-def by blast

lemma reflp-on-subset:
A \subseteq B \Rightarrow \text{reflp-on } P B \Rightarrow \text{reflp-on } P A
by (auto simp: reflp-on-def)

lemma transp-on-subset:
\[A \subseteq B \implies \text{transp-on } P B \implies \text{transp-on } P A \]
by (auto simp: transp-on-def)

Definition \(\text{wfp-on} :: (a \Rightarrow a \Rightarrow \text{bool}) \Rightarrow \text{a set} \Rightarrow \text{bool} \)
where
\[\text{wfp-on} P A \iff \neg (\exists f. \forall i. f i \in A \land P (f (\text{Suc } i)) (f i)) \]

Definition \(\text{inductive-on} :: (a \Rightarrow a \Rightarrow \text{bool}) \Rightarrow \text{a set} \Rightarrow \text{bool} \)
where
\[\text{inductive-on} P A \iff (\forall Q. (\forall y \in A. (\forall x \in A. P x y \implies Q x)) \implies Q y) \implies (\forall x \in A. Q x) \]

Lemma \(\text{inductive-onI} [\text{Pure.intro}]:\)

- **assumes** \(\land Q x. [x \in A; (\land y. [y \in A; \land x. [x \in A; P x y] \implies Q x]] \implies Q y)] \implies Q x\)
- **shows** \(\text{inductive-on } P A\)
- **using** \(\text{assms unfolding inductive-on-def by metis}\)

If \(P\) is well-founded on \(A\) then every non-empty subset \(Q\) of \(A\) has a minimal element \(z\) w.r.t. \(P\), i.e., all elements that are \(P\)-smaller than \(z\) are not in \(Q\).

Lemma \(\text{wfp-on-imp-minimal}:\)

- **assumes** \(\text{wfp-on } P A\)
- **shows** \(\forall Q x. x \in Q \land Q \subseteq A \implies (\exists z \in Q. \forall y. P y z \implies y \notin Q)\)
- **proof** (rule contr)
 - **assume** \(\neg ?\text{thesis}\)
 - **then obtain** \(Q x\) \text{ where } \exists*: x \in Q Q \subseteq A
 - and \(\forall z. \exists y. z \in Q \implies P y z \land y \in Q\) by metis
 - **from choice \([\text{OF this(3)}]\) obtain** \(f\)
 - **where** \(*\text{**: } \forall x \in Q. P (f x) x \land f x \in Q\) by blast
 - **let** \(?S = \lambda i. (f ^\prec i) x\)
 - **have** \(*\text{**: } \forall i. ?S i \in Q\)
- **proof**
 - **fix** \(i\) **show** \(?S i \in Q\) by (induct \(i\)) (auto simp: \(*\text{**}\))
- **qed**

 then have \(\forall i. ?S i \in A\) **using** \(*\text{**}\) by blast

 moreover have \(\forall i. P (?S (\text{Suc } i)) (?S i)\)
- **proof**
 - **fix** \(i\) **show** \(P (?S (\text{Suc } i)) (?S i)\)
 - **by** (induct \(i\)) (auto simp: \(*\text{** ***}\))
- **qed**

 ultimately have \(\forall i. ?S i \in A \land P (?S (\text{Suc } i)) (?S i)\) by blast
 with \(\text{assms(1)}\) **show** \(\text{False}\)
- **unfolding** \(\text{wfp-on-def}\) **by** fast
- **qed**

Lemma \(\text{minimal-imp-inductive-on}:\)

- **assumes** \(\forall Q x. x \in Q \land Q \subseteq A \implies (\exists z \in Q. \forall y. P y z \implies y \notin Q)\)
- **shows** \(\text{inductive-on } P A\)
- **proof** (rule contr)
 - **assume** \(\neg ?\text{thesis}\)
then obtain \(Q x \)
where \(\star: \forall y \in A. (\forall x \in A. P x y \rightarrow Q x) \rightarrow Q y \)
and \(\star\!\!\!: x \in A \Rightarrow \neg Q x \)
by (auto simp: inductive-on-def)
let \(?Q = \{ x \in A. \neg Q x \} \)
from \(\star\!\!\!\!\!\!\!\!: \exists x \in A \) have \(x \in ?Q \) by auto
moreover have \(?Q \subseteq A \) by auto
ultimately obtain \(z \) where \(z \in ?Q \)
and \(\min: \forall y. P y z \rightarrow y \notin ?Q \)
using assms [THEN spec[of - ?Q], THEN spec[of - x]] by blast
from \(z \in ?Q \) have \(z \in A \) and \(\neg Q z \) by auto
then have \(y \in ?Q \) by auto
with \(P y z \) and \(\min \) show \(False \) by auto
qed

lemmas wfp-on-imp-inductive-on =
wfp-on-imp-minimal [THEN minimal-imp-inductive-on]

lemma inductive-on-induct [consumes 2, case-names less, induct pred: inductive-on]:
assumes inductive-on \(P A \) and \(x \in A \)
and \(\forall y. [y \in A; \forall x. [x \in A; P x y] \Rightarrow Q x] \Rightarrow Q y \)
shows \(Q x \)
using assms unfolding inductive-on-def by metis

lemma inductive-on-imp-wfp-on:
assumes inductive-on \(P A \)
shows \(wfp-on P A \)
proof –
let \(?Q = \lambda x. \neg (\exists f. f 0 = x \land (\forall i. f i \in A \land P (f (Suc i)) (f i))) \)
{ fix \(x \) assume \(x \in A \)
 with assms have \(\neg Q x \)
 proof (induct rule: inductive-on-induct)
 fix \(y \) assume \(y \in A \) and \(IH: \forall x. x \in A \Rightarrow P x y \Rightarrow \neg Q x \)
 show \(\neg Q y \)
 proof (rule ccontr)
 assume \(\neg Q y \)
 then obtain \(f \) where \(\star: f 0 = y \)
 \(\forall i. f i \in A \land P (f (Suc i)) (f i) \) by auto
 then have \(P (f (Suc 0)) (f 0) \) and \(f (Suc 0) \in A \) by auto
 with \(IH \) and \(\star \) have \(\neg Q (f (Suc 0)) \) by auto
 with \(\star \) show \(False \) by auto
 qed
 qed }
then show \(\neg \thesis unfolding wfp-on-def by blast
qed

definition antisymp-on :: \(('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a set \Rightarrow bool \)
where
antisymp-on \(P A \) \(\longleftrightarrow \forall a \in A. \forall b \in A. (P a b \land P b a \Rightarrow a = b) \)
lemma antisym-onI [Pure.intro]:
\((\forall a. b. a \in A; b \in A; P a b; P b a) \implies a = b) \implies antisym-on P A
by (auto simp: antisym-on-def)

lemma antisym-on-refclp [simp]:
antisym-on P == antisym-on P A
by (auto simp: antisym-on-def)

definition qo-on :: ('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ bool where
qo-on P A = reflp-on P A ∧ transp-on P A

definition irreflp-on :: ('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ bool where
irreflp-on P A = (∀a∈A. ~P a a)

definition po-on :: ('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ bool where
po-on P A = (irreflp-on P A ∧ transp-on P A)

lemma po-onI [Pure.intro]:
[irreflp-on P A; transp-on P A] ⇒ po-on P A
by (auto simp: po-on-def)

lemma irreflp-onI [Pure.intro]:
(∀a. a ∈ A ⇒ ~ P a a) ⇒ irreflp-on P A
unfolding irreflp-on-def by blast

lemma irreflp-on-converse:
irreflp-on P A ⇒ irreflp-on P⁻¹⁻¹ A
unfolding irreflp-on-def by blast

lemma irreflp-on-converse-simp [simp]:
irreflp-on P⁻¹⁻¹ A = irreflp-on P A
by (auto simp: irreflp-on-def)

lemma po-on-converse-simp [simp]:
po-on P⁻¹⁻¹ A = po-on P A
by (simp add: po-on-def)

lemma po-on-imp-go-on:
po-on P A ⇒ qo-on (P==) A
unfolding po-on-def qo-on-def by (metis reflp-on-refclp transp-on-refclp)

lemma po-on-imp-irreflp-on:
po-on P A ⇒ irreflp-on P A
by (auto simp: po-on-def)

lemma po-on-imp-transp-on:
po-on P A ⇒ transp-on P A
by (auto simp: po-on-def)

lemma irreflp-on-subset:
assumes \(A \subseteq B \) and \(\text{irreflp-on} \ P \ B \)
shows \(\text{irreflp-on} \ P \ A \)
using assms by (auto simp: irreflp-on-def)

lemma po-on-subset:
assumes \(A \subseteq B \) and \(\text{po-on} \ P \ B \)
shows \(\text{po-on} \ P \ A \)
using transp-on-subset and irreflp-on-subset and assms
unfolding po-on-def by blast

lemma transp-on-irreflp-on-imp-antisym-on:
assumes \(\text{transp-on} \ P \ A \) and \(\text{irreflp-on} \ P \ A \)
shows \(\text{antisym-on} \ (P==) \ A \)
proof
fix \(a \ b \) assume \(a \in A \) and \(b \in A \) and \(P== a b \) and \(P== b a \)
show \(a = b \)
proof (rule ccontr)
assume \(a \neq b \)
with \(P== a b \) and \(P== b a \) have \(P a b \) and \(P b a \) by auto
with \(\text{transp-on} \ P \ A \) and \(a \in A \) and \(b \in A \) have \(P a a \) unfolding transp-on-def by blast
with \(\text{irreflp-on} \ P \ A \) and \(a \in A \) show False unfolding irreflp-on-def by blast
qed
qed

lemma po-on-imp-antisym-on:
assumes \(\text{po-on} \ P \ A \)
shows \(\text{antisym-on} \ (P==) \ A \)
using transp-on-irreflp-on-imp-antisym-on [of \(P \ A \)] and assms
unfolding po-on-def by blast

lemma strict-reflclp [simp]:
assumes \(x \in A \) and \(y \in A \) and \(\text{transp-on} \ P \ A \) and \(\text{irreflp-on} \ P \ A \)
shows \(\text{strict} \ (P==) \ x y = P \ x y \)
using assms unfolding transp-on-def irreflp-on-def by blast

lemma qo-on-imp-refl-on:
\(\text{qo-on} \ P \ A \Rightarrow \text{reflp-on} \ P \ A \)
by (auto simp: qo-on-def)

lemma qo-on-imp-transp-on:
qo-on $P \ A \Rightarrow \ transp-on \ P \ A$
by (auto simp: qo-on-def)

lemma qo-on-subset:
$A \subseteq B \Rightarrow qo-on \ P \ B \Rightarrow qo-on \ P \ A$

unfolding qo-on-def
using reflp-on-subset
and transp-on-subset by blast

Quasi-orders are instances of the preorder class.

lemma qo-on-UNIV-conv:
$qo-on \ P \ \text{UNIV} \longleftrightarrow \ \text{class.preorder} \ P \ (\text{strict} \ P) \ (\text{is} \ ?\text{lhs} = ?\text{rhs})$

proof
assume ?lhs then show ?rhs
 unfolding qo-on-def class.preorder-def
 using qo-on-imp-reflp-on [of P UNIV]
 and qo-on-imp-transp-on [of P UNIV]
 by (auto simp: reflp-on-def)
next
assume ?rhs then show ?lhs
 unfolding class.preorder-def
 by (auto simp: qo-on-def)
qed

lemma wfp-on-iff-inductive-on:
wfp-on $P \ A \longleftrightarrow \ \text{inductive-on} \ P \ A$

by (blast intro: inductive-on-imp-wfp-on wfp-on-imp-inductive-on)

lemma wfp-on-iff-minimal:
wfp-on $P \ A \longleftrightarrow (\forall Q \ x. \ x \in Q \land Q \subseteq A \Rightarrow (\exists z \in Q. \ \forall y. \ P y z \Rightarrow y \notin Q))$

using wfp-on-imp-minimal [of P A]
and minimal-imp-inductive-on [of A P]
and inductive-on-imp-wfp-on [of P A]
by blast

Every non-empty well-founded set A has a minimal element, i.e., an element that is not greater than any other element.

lemma wfp-on-imp-has-min-elt:
assumes wfp-on $P \ A \ and \ A \neq \ \{\}$
shows $\exists x \in A. \ \forall y \in A. \ P y x$

using assms unfolding wfp-on-iff-minimal by force

lemma wfp-on-induct [consumes 2, case-names less, induct pred: wfp-on]:
assumes wfp-on $P \ A \ and \ x \in A$
and $\forall y. \ y \in A. \ \forall x. \ [x \in A; \ P x y] \Longrightarrow Q x \Longrightarrow Q y$
shows $Q x$

using assms and inductive-on-induct [of P A x]
unfolding wfp-on-iff-inductive-on by blast

lemma wfp-on-UNIV [simp]:
 wfp-on P UNIV ←→ wfP P
unfolding wfp-on-iff-inductive-on inductive-on-def wfP-def wf-def by force

1.1 Measures on Sets (Instead of Full Types)

definition
 inv-image-betw ::
 ('b ⇒ 'b ⇒ bool) ⇒ ('a ⇒ 'b) ⇒ 'a set ⇒ 'b set ⇒ ('a ⇒ bool)
where
 inv-image-betw P f A B = (λx y. x ∈ A ∧ y ∈ A ∧ f x ∈ B ∧ f y ∈ B ∧ P (f x) (f y))

definition
 measure-on :: ('a ⇒ nat) ⇒ 'a set ⇒ 'a ⇒ 'a ⇒ bool
where
 measure-on f A = inv-image-betw (op <) f A UNIV

lemma in-inv-image-betw [simp]:
 inv-image-betw P f A B x y ←→ x ∈ A ∧ y ∈ A ∧ f x ∈ B ∧ f y ∈ B ∧ P (f x) (f y)
 by (auto simp: inv-image-betw-def)

lemma in-measure-on [simp, code-unfold]:
 measure-on f A x y ←→ x ∈ A ∧ y ∈ A ∧ f x < f y
 by (simp add: measure-on-def)

lemma wfp-on-inv-image-betw [simp, intro!]:
 assumes wfp-on P B
 shows wfp-on (inv-image-betw P f A B) A (is wfp-on ?P A)
proof (rule ccontr)
 assume ¬ ?thesis
 then obtain g where ∀ i. g i ∈ A ∧ ?P (g (Suc i)) (g i) by (auto simp: wfp-on-def)
 with assms show False by (auto simp: wfp-on-def)
qed

lemma wfp-on-less:
 wfp-on (op <) (UNIV :: nat set)
 using wfp-less by (auto simp: wfP-def)

lemma wfp-on-measure-on [iff]:
 wfp-on (measure-on f A) A
unfolding measure-on-def
 by (rule wfp-less [THEN wfp-on-inv-image-betw])

lemma wfp-on-mono:
\[A \subseteq B \implies (\forall x \ y. \ x \in A \implies y \in A \implies P \ x \ y \implies Q \ x \ y) \implies \operatorname{wfp-on} \ Q \ B \implies \operatorname{wfp-on} \ P \ A \]

Lemma: \(\operatorname{wfp-on-subset} \):
\[A \subseteq B \implies \operatorname{wfp-on} \ P \ B \implies \operatorname{wfp-on} \ P \ A \]
using \(\operatorname{wfp-on-mono} \) by blast

Lemma: \(\operatorname{restrict-to-iff} \) [iff]:
\[\operatorname{restrict-to} \ P \ A \ x \ y \iff x \in A \land y \in A \land P \ x \ y \]
by (simp add: restrict-to-def)

Lemma: \(\operatorname{wfp-on-restrict-to} \) [simp]:
\[\operatorname{wfp-on} (\operatorname{restrict-to} \ P \ A) \ A = \operatorname{wfp-on} \ P \ A \]
by (auto simp: wfp-on-def)

Lemma: \(\operatorname{irreflp-on-strict} \) [simp, intro]:
\[\operatorname{irreflp-on} (\operatorname{strict} \ P) \ A \]
by (auto simp: irreflp-on-def)

Lemma: \(\operatorname{transp-on-map}' \) :
assumes \(\operatorname{transp-on} \ Q \ B \)
and \(g \ ' \ A \subseteq B \)
and \(h \ ' \ A \subseteq B \)
and \(\forall x. \ x \in A \implies Q = (h x) (g x) \)
shows \(\operatorname{transp-on} \ (\lambda x \ y. \ Q \ (g x) \ (h y)) \ A \)
using \(\text{assms unfolding \ operatorname{transp-on-def}} \)
by auto (metis imageI set-mp)

Lemma: \(\operatorname{transp-on-map} \)
assumes \(\operatorname{transp-on} \ Q \ B \)
and \(h \ ' \ A \subseteq B \)
shows \(\operatorname{transp-on} \ (\lambda x \ y. \ Q \ (h x) \ (h y)) \ A \)
using \(\text{transp-on-map}' \) [of \(Q \ B \ h \ A \ h \), simplified, OF \text{assms}] by blast

Lemma: \(\operatorname{irreflp-on-map} \)
assumes \(\operatorname{irreflp-on} \ Q \ B \)
and \(h \ ' \ A \subseteq B \)
shows \(\operatorname{irreflp-on} \ (\lambda x \ y. \ Q \ (h x) \ (h y)) \ A \)
using \(\text{assms unfolding \ operatorname{irreflp-on-def}} \) by auto

Lemma: \(\operatorname{po-on-map} \)
assumes \(\operatorname{po-on} \ Q \ B \)
and \(h \ ' \ A \subseteq B \)
shows \(\operatorname{po-on} \ (\lambda x \ y. \ Q \ (h x) \ (h y)) \ A \)
using \(\text{assms and \ operatorname{transp-on-map} and \ operatorname{irreflp-on-map}} \)
unfolding \(\text{po-on-def} \) by auto

Lemma: \(\operatorname{chain-on-transp-on-less} \)
assumes \(\text{chain-on } P f A \) and \(\text{transp-on } P A \) and \(i < j \)
shows \(P (f i) (f j) \)
using \((i < j) \)
proof (induct \(j \))
 case 0 then show \(?\text{case by simp} \)
next
 case (Suc \(j \))
 show \(?\text{case} \)
 proof (cases \(i = j \))
 case True
 with Suc show \(?\text{thesis using assms(1) by simp} \)
 next
 case False
 with Suc have \(P (f i) (f j) \) by force
 moreover from assms have \(P (f j) (f (\text{Suc } j)) \) by auto
 ultimately show \(?\text{thesis using assms(1, 2) unfolding transp-on-def by blast} \)
qed

lemma \(\text{wfp-on-imp-irreflp-on:} \)
assumes \(\text{wfp-on } P A \)
shows \(\text{irreflp-on } P A \)
proof
 fix \(x \)
 assume \(x \in A \)
 show \(\neg P x x \)
 proof
 let \(\text{if } = \lambda_. \ x \)
 assume \(P x x \)
 then have \(\forall i. P (\text{if } (\text{Suc } i)) (\text{if } i) \) by blast
 with \(x \in A \) have \(\neg \text{wfp-on } P A \) by (auto simp: wfp-on-def)
 with assms show False by contradiction
 qed
qed

inductive \(\text{accessible-on} \) :: \(\text{'a} \Rightarrow \text{'a} \Rightarrow \text{bool} \rightleftharpoons \text{'a set} \Rightarrow \text{'a} \Rightarrow \text{bool} \)
for \(P \) and \(A \)
where
 \(\text{accessible-onI [Pure.intro]:} \)
 \(\[(x \in A; \forall y. \ y \in A; P y x) \implies \text{accessible-on } P A y \] \implies \text{accessible-on } P A x \)

lemma \(\text{accessible-on-imp-mem:} \)
assumes \(\text{accessible-on } P A a \)
shows \(a \in A \)
using assms by (induct) auto

lemma \(\text{accessible-on-induct [consumes 1, induct pred: accessible-on]:} \)
assumes \(*: \text{accessible-on } P A a \)
and IH: \(\forall x. [\text{accessible-on } P A x; \forall y. [y \in A; P y x] \implies Q y] \implies Q x \)

shows Q a
by (rule * [THEN accessible-on.induct]) (auto intro: IH accessible-onI)

lemma accessible-on-downward:
\[\text{accessible-on } P A b \implies a \in A \implies P a b \implies \text{accessible-on } P A a \]
by (cases rule: accessible-on.cases) fast

lemma accessible-on-restrict-to-downwards:
assumes (restrict-to P A)++ a b and accessible-on P A b
shows accessible-on P A a
using assms by (induct) (auto dest: accessible-on-imp-mem accessible-on-downward)

lemma accessible-on-inductive-on:
assumes \(\forall x \in A. \text{accessible-on } P A x \)
shows inductive-on P A
proof
fix Q x
assume \(x \in A \)
and *: \(\forall y. [y \in A; \forall x. [x \in A; P x y] \implies Q x] \implies Q y \)
with assms have accessible-on P A x by auto
then show Q x
proof (induct)
 case (1 z)
 then have z \(\in\) A by (blast dest: accessible-on-imp-mem)
 show ?case by (rule *) fact+
qed

lemmas accessible-on-imp-wfp-on = accessible-on-imp-inductive-on [THEN inductive-on-imp-wfp-on]

lemma wfp-on-translp-imp-wfp-on:
assumes wfp-on (P++) A
shows wfp-on P A
by (rule ccontr) (insert assms, auto simp: wfp-on-def)

lemma inductive-on-imp-accessible-on:
assumes inductive-on P A
shows \(\forall x \in A. \text{accessible-on } P A x \)
proof
fix x
assume \(x \in A \)
with assms show accessible-on P A x
by (induct) (auto intro: accessible-onI)
qed

lemma inductive-on-accessible-on-conv:
\(\text{inductive-on } P A \iff (\forall x \in A. \text{accessible-on } P A x) \)
using inductive-on-imp-accessible-on
and accessible-on-imp-inductive-on
by blast

lemmas wfp-on-imp-accessible-on =
wfp-on-imp-inductive-on [THEN inductive-on-imp-accessible-on]

lemma accessible-on-tranclp:
assumes accessible-on P A x
shows accessible-on ((restrict-to P A)[++]) A x
(is accessible-on ?P A x)
using assms
proof (induct)
case (1 x)
then have x ∈ A by (blast dest: accessible-on-imp-mem)
then show ?case
proof (rule accessible-onI)
 fix y
 assume y ∈ A
 assume ?P y x
 then show accessible-on ?P A y
 proof (cases)
 assume restrict-to P A y x
 with 1 and ⟨y ∈ A⟩ show ?thesis by blast
 next
 fix z
 assume ?P y z and restrict-to P A z x
 with 1 have accessible-on ?P A z by (auto simp: restrict-to-def)
 from accessible-on-downward [OF this ⟨y ∈ A⟩ ⟨?P y z⟩]
 show ?thesis .
 qed
qed

lemma wfp-on-restrict-to-tranclp:
assumes wfp-on P A
shows wfp-on ((restrict-to P A)[++]) A
using wfp-on-imp-accessible-on [OF assms]
and accessible-on-tranclp [of P A]
and accessible-on-imp-wfp-on [of A (restrict-to P A)[++]]
by blast

lemma wfp-on-restrict-to-tranclp'-
assumes wfp-on (restrict-to P A)[++] A
shows wfp-on P A
by (rule ccontr) (insert assms, auto simp: wfp-on-def)

lemma wfp-on-restrict-to-tranclp-wfp-on-conv:
wfp-on (restrict-to P A)[++] A ↔ wfp-on P A
using wfp-on-restrict-to-tranclp [of P A]
and wfp-on-restrict-to-tranclp' [of P A]
by blast

lemma tranclp-idemp [simp]:
\((P^{++})^{++} = P^{++}\) (is \(?l = ?r\))
proof (intro ext)
 fix \(x y\)
 show \(?l x y = ?r x y\)
 proof
 assume \(?l x y\) then show \(?r x y\) by (induct) auto
 next
 assume \(?r x y\) then show \(?l x y\) by (induct) auto
 qed
qed

lemma stepfun-imp-tranclp:
assumes \(f 0 = x\) and \(f (\text{Suc } n) = z\)
and \(\forall i \leq n. P (f i) (f (\text{Suc } i))\)
shows \(P^{++} x z\)
using assms
by (induct n arbitrary: \(x z\))
 (auto intro: tranclp.trancl-into-trancl)

lemma tranclp-imp-stepfun:
assumes \(P^{++} x z\)
shows \(\exists f n. f 0 = x \land f (\text{Suc } n) = z \land (\forall i \leq n. P (f i) (f (\text{Suc } i)))\)
(is \(\exists f n. ?P x z f n\))
using assms
proof (induct rule: tranclp-induct)
case (base y)
 let \(?f = (\lambda y. 0 := x)\)
 have \(?f 0 = x\) and \(?f (\text{Suc } 0) = y\) by auto
 moreover have \(\forall i \leq 0. P (?f i) (?f (\text{Suc } i))\)
 using base by auto
 ultimately show \(?case by blast\)
next
case (step y z)
 then obtain \(f n\) where IH: \(?P x y f n\) by blast
 then have \(\forall i \leq n. P (f i) (f (\text{Suc } i))\)
 and \([\text{simp}]: f 0 = x f (\text{Suc } n) = y\)
 by auto
 let \(?n = \text{Suc } n\)
 let \(?f = f (\text{Suc } ?n := z)\)
 have \(?f 0 = x\) and \(?f (\text{Suc } ?n) = z\) by auto
 moreover have \(\forall i \leq ?n. P (?f i) (?f (\text{Suc } i))\)
 using \(P y z\) and \(\ast\) by auto
 ultimately show \(?case by blast\)
qed
lemma tranclp-stepfun-conv:
\[P^{++} \ x \ y \iff (\exists \ f \ n. \ f \ 0 = x \land f \ (Suc \ n) = y \land (\forall i \leq n. \ P \ (f \ i) \ (f \ (Suc \ i)))) \]
using tranclp-imp-stepfun and stepfun-imp-tranclp by metis

1.2 Facts About Predecessor Sets

lemma qo-on-predecessor-subset-conv':
assumes qo-on P A and B \subseteq A and C \subseteq A
shows \{ \{ x \in A. \ \exists y \in B. \ P \ x y \} \}\subseteq \{ \{ x \in A. \ \exists y \in C. \ P \ x y \} \}\iff (\forall x \in B. \ \exists y \in C. \ P \ x y)
using assms by (auto simp: subset-eq qo-on-def reflp-on-def, unfold transp-on-def) metis+

lemma qo-on-predecessor-subset-conv:
[qo-on P A; x \in A; y \in A] \implies \{ \{ z \in A. \ P \ z x \} \}\subseteq \{ \{ z \in A. \ P \ z y \} \}\iff P \ x y
using qo-on-predecessor-subset-conv' [of P A {x} {y}] by simp

lemma po-on-predecessors-eq-conv:
assumes po-on P A and x \in A and y \in A
shows \{ \{ z \in A. \ P \ x z \} \}\= \{ \{ z \in A. \ P \ y z \} \}\iff x \= y
using assms (2−) and reflp-on-reflclp [of P A]
and po-on-imp-antisym-on [OF po-on P A]
unfolding antisym-on-def reflp-on-def
by blast

lemma restrict-to-rtranclp:
assumes transp-on P A
and x \in A and y \in A
shows (restrict-to P A)** x y \iff P** x y
proof –
\{ assume (restrict-to P A)** x y
then have P** x y using assms
by (induct) (auto, unfold transp-on-def, blast) \}
with assms show ?thesis by auto
qed

lemma reflp-on-restrict-to-rtranclp:
assumes reflp-on P A and transp-on P A
and x \in A and y \in A
shows (restrict-to P A)** x y \iff P x y
unfolding restrict-to-rtranclp [OF assms(2−)]
unfolding reflp-on-reflclp-simp [OF assms(1, 3−)] ..

end
2 Constructing Minimal Bad Sequences

theory Minimal-Bad-Sequences
imports Restricted-Predicates
begin

The set of all infinite sequences over elements from \(A \).

definition \(SEQ \ A = \{ f :: \mathbb{N} \Rightarrow 'a. \forall i. f i \in A \} \)

lemma \(SEQ \)-iff [iff]:
\(f \in SEQ \ A \iff (\forall i. f i \in A) \)
by (auto simp: SEQ-def)

An infinite sequence is \textit{good} whenever there are indices \(i < j \) such that \(P (f \ i) \ (f \ j) \).

definition \textit{good} :: \(('a \Rightarrow 'a) \Rightarrow (\mathbb{N} \Rightarrow 'a) \Rightarrow \text{bool} \) where
\(\text{good} \ P \ f \iff (\exists i \ j. i < j \land P (f \ i) \ (f \ j)) \)

A sequence that is not good is called \textit{bad}.

abbreviation \textit{bad} \(P \ f \equiv \neg \text{good} \ P \ f \)

lemma \textit{goodI}:
\([i < j; P (f \ i) \ (f \ j)] \Rightarrow \text{good} \ P \ f \)
by (auto simp: good-def)

lemma \textit{goodE} [elim]:
\(\text{good} \ P \ f \Rightarrow (\forall i \ j. [i < j; P (f \ i) \ (f \ j)] \Rightarrow Q) \Rightarrow Q \)
by (auto simp: good-def)

lemma \textit{badE} [elim]:
\(\text{bad} \ P \ f \Rightarrow ((\forall i \ j. i < j \Rightarrow \neg P (f \ i) \ (f \ j)) \Rightarrow Q) \Rightarrow Q \)
by (auto simp: good-def)

A locale capturing the construction of minimal bad sequences over values from \(A \). Where minimality is to be understood w.r.t. \textit{size} of an element.

locale mbs =
fixes \(A :: ('a :: \text{size}) \text{ set} \)
begin

Since the \textit{size} is a well-founded measure, whenever some element satisfies a property \(P \), then there is a size-minimal such element.

lemma \textit{minimal}:
\(\text{assumes} \ x \in A \ \text{and} \ P \ x \)
\(\text{shows} \ \exists y \in A. \ \text{size} \ y \leq \text{size} \ x \land P \ y \land (\forall z \in A. \ \text{size} \ z < \text{size} \ y \Rightarrow \neg P \ z) \)
using assms
proof (induction \(x \) taking: size rule: measure-induct)
\(\text{case} (1 \ x) \)
then show \(\vdash \)
proof \((\text{cases } \forall y \in A. \text{ size } y < \text{ size } x \rightarrow \neg P y)\)

\text{case } True
with \(I\) show \(?thesis\) by blast
next
\text{case } False
then obtain \(y\) where \(y \in A\) and \(\text{size } y < \text{ size } x\) and \(P y\) by blast
with \(I\,IH\) show \(?thesis\) by (fastforce elim!: order-trans)
qed

\text{qed}

\text{lemma} \ less-not-eq \ [simp]:
\(x \in A \Longrightarrow \text{size } x < \text{ size } y \Longrightarrow x = y \Longrightarrow \text{False}\)
by simp

The set of all bad sequences over \(A\).

\text{definition} \ BAD \ P = \{f \in \text{SEQ } A. \text{ bad } P f\}

\text{lemma} \ BAD-iff \ [iff]:
\(f \in \text{BAD } P \iff (\forall i. f i \in A) \land \text{bad } P f\)
by (auto simp: BAD-def)

A partial order on infinite bad sequences.

\text{definition} \ geseq :: \((\text{nat } \Rightarrow 'a) \times (\text{nat } \Rightarrow 'a))\ \text{set where}
geseq =
\{(f, g). f \in \text{SEQ } A \land g \in \text{SEQ } A \land (f = g \lor (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j)))\}\)

The strict part of the above order.

\text{definition} \ gseq :: \((\text{nat } \Rightarrow 'a) \times (\text{nat } \Rightarrow 'a))\ \text{set where}
gseq = \{(f, g). f \in \text{SEQ } A \land g \in \text{SEQ } A \land (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j)))\}\)

\text{lemma} \ geseq-iff:
\((f, g) \in \text{geseq} \iff f \in \text{SEQ } A \land g \in \text{SEQ } A \land (f = g \lor (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j)))\)\)
by (auto simp: geseq-def)

\text{lemma} \ gseq-iff:
\((f, g) \in \text{gseq} \iff f \in \text{SEQ } A \land g \in \text{SEQ } A \land (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j)))\)
by (auto simp: gseq-def)

\text{lemma} \ geseqE:
assumes \((f, g) \in \text{geseq} \land \big[\forall i. f i \in A; \forall i. g i \in A; f = g\big] \Longrightarrow Q\)
and \(\bigwedge i. [\forall i. f i \in A; \forall i. g i \in A; \text{size } (g i) < \text{size } (f i); \forall j < i. f j = g j]\) \\
\Longrightarrow Q
shows \(Q \)
using assms by (auto simp: gseq_iff)

lemma gseqE:
assumes \((f, g) \in gseq \)
and \(\forall i. \forall i. f i \in A; \forall i. g i \in A; \text{size} (g i) < \text{size} (f i); \forall j < i. f j = g j \)
\[\Rightarrow Q \]
shows \(Q \)
using assms by (auto simp: gseq_iff)

The \(i \)-th "column" of a set \(B \) of infinite sequences.

definition ith B i = \(\{ f i | f. f \in B \} \)

lemma ithI [intro]:
\(f \in B \Rightarrow f i = x \Rightarrow x \in \text{ith} B i \)
by (auto simp: ith_def)

lemma ithE [elim]:
\(x \in \text{ith} B i ; \ \forall f. \forall f. f i = x \Rightarrow Q \) \[\Rightarrow Q \]
by (auto simp: ith_def)

lemma ith-conv:
\(x \in \text{ith} B i \ \longleftrightarrow (\exists f. f. x = f i) \)
by auto

context
fixes B :: 'a set
assumes subset-A: \(B \subseteq A \) and ne: \(B \neq \{\} \)
begin

A minimal element (w.r.t. size) from a set.

definition min-elt = \(\text{SOME } x. x \in B \land (\forall y \in A. \text{size} y < \text{size} x \Rightarrow y \notin B) \)\)

lemma min-elt-ex:
\(\exists x. x \in B \land (\forall y \in A. \text{size} y < \text{size} x \Rightarrow y \notin B) \)
using subset-A and ne using minimal \([\text{of - } \lambda x. x \in B] \) by auto

lemma min-elt-mem:
\(\text{min-elt} \in B \)
using somel-ex \([\text{OF min-elt-ex}] \) by (auto simp: min-elt-def)

lemma min-elt-minimal:
assumes \(y \in A \) and size \(y < \text{size} \text{min-elt} \)
shows \(y \notin B \)
using somel-ex \([\text{OF min-elt-ex}] \) and assms by (auto simp: min-elt-def)

end

end
The restriction of a set B of sequences to sequences that are equal to a given sequence f up to position i.

definition eq-upto :: $(\text{nat} \Rightarrow 'a) \text{ set} \Rightarrow (\text{nat} \Rightarrow 'a) \Rightarrow \text{nat} \Rightarrow (\text{nat} \Rightarrow 'a) \text{ set}$

where

$$eq-upto\ B\ f\ i = \{ g \in B. \forall j < i. f j = g j \}$$

lemma eq-uptoI [intro]:

$$[g \in B; \ \land\ j. j < i \Rightarrow f j = g j] \Rightarrow g \in eq-upto\ B\ f\ i$$

by (auto simp: eq-upto-def)

lemma eq-uptoE [elim]:

$$[g \in eq-upto\ B\ f\ i; [g \in B; \ \land\ j. j < i \Rightarrow f j = g j] \Rightarrow Q] \Rightarrow Q$$

by (auto simp: eq-upto-def)

lemma eq-upto-Suc:

$$[g \in eq-upto\ B\ f\ i; g i = f i] \Rightarrow g \in eq-upto\ B\ f\ (\text{Suc}\ i)$$

by (auto simp: eq-upto-def less-Suc-eq)

lemma eq-upto-0 [simp]:

$$eq-upto\ B\ f\ 0 = B$$

by (auto simp: eq-upto-def)

lemma eq-upto-cong [fundef-cong]:

assumes $\land\ j. j < i \Rightarrow f j = g j$ and $B = C$

shows $eq-upto\ B\ f\ i = eq-upto\ C\ g\ i$

using assms by (auto simp: eq-upto-def)

context mbs
begin

context

fixes $P :: 'a \Rightarrow 'a \Rightarrow \text{bool}$

begin

A lower bound to all sequences in a set of sequences B.

fun $lb :: \text{nat} \Rightarrow 'a$ where

$lb: lb\ i = \text{min-elt} \ (i\text{th}\ (eq-upto\ (BAD\ P)\ lb\ i)\ i)$

declare lb.sims [simp del]

lemma eq-upto-BAD-mem:

assumes $f \in eq-upto\ (BAD\ P)\ g\ i$

shows $f\ j \in A$

using assms by (auto)

Assume that there is some infinite bad sequence h.

context

fixes $h :: \text{nat} \Rightarrow 'a$
assumes BAD-ex: \(h \in BAD P \)

begin

When there is a bad sequence, then filtering \(BAD P \) w.r.t. positions in \(lb \) never yields an empty set of sequences.

lemma eq-upto-BAD-non-empty:

\[eq\text{-}upto (BAD P) \, lb \, i \neq \{\} \]

proof (induct \(i \))

case 0

show \(?\text{case} \) using BAD-ex by auto

next

let \(?A = \lambda i. \text{ith} (eq\text{-}upto (BAD P) \, lb \, i) \, i \)

case (Suc \(i \))

then have \(?A \, i \neq \{\} \) by auto

moreover have eq-upto (BAD P) \(lb \, i \subseteq eq\text{-}upto (BAD P) \, lb \, 0 \) by auto

ultimately have \(?A \, i \subseteq A \) and \(?A \, i \neq \{\} \) by (auto simp: ith-def)

from min-elt-mem [OF this, folded lb] obtain \(f \)

then show \(?\text{case} \) by blast

qed

lemma non-empty-ith:

shows \(\text{ith} (eq\text{-}upto (BAD P) \, lb \, i) \, i \subseteq A \)

and \(\text{ith} (eq\text{-}upto (BAD P) \, lb \, i) \, i \neq \{\} \)

using eq-upto-BAD-non-empty [of \(i \)] by auto

lemmas

\(lb\text{-}minimal = \text{min-elt\text{-}minimal} \) [OF non-empty-ith, folded lb] and

\(lb\text{-}mem = \text{min-elt\text{-}mem} \) [OF non-empty-ith, folded lb]

\(lb \) is a infinite bad sequence.

lemma lb-BAD:

\(lb \in BAD P \)

proof –

have \(\ast: \forall j. \, lb \, j \in \text{ith} (eq\text{-}upto (BAD P) \, lb \, j) \, j \) by (rule lb-mem)

then have \(\forall i. \, lb \, i \in A \) by (auto simp: ith-conv) (metis eq-upto-BAD-mem)

moreover

{ assume good P \(lb \)

then obtain \(i \, j \) where \(i < j \) and \(P \, (lb \, i) \, (lb \, j) \) by (auto simp: good-def)

from \(\ast \) have \(lb \, j \in \text{ith} (eq\text{-}upto (BAD P) \, lb \, j) \, j \) by (auto)

then obtain \(g \) where \(g \in eq\text{-}upto (BAD P) \, lb \, j \) and \(g \, j = lb \, j \) by force

then have \(\forall k \leq j. \, g \, k = lb \, k \) by (auto simp: order-le-less)

with \(i < j \) and \(\text{P} \, (lb \, i) \, (lb \, j) \) have \(P \, (g \, i) \, (g \, j) \) by auto

with \(i < j \) have good P \(g \) by (auto simp: good-def)

with \(g \in eq\text{-}upto (BAD P) \, lb \, j \) have False by auto }

ultimately show \(?\text{thesis} \) by blast

qed

There is no infinite bad sequence that is strictly smaller than \(lb \).
lemma lb-lower-bound:
∀ g. (lb, g) ∈ gseq → g ∉ BAD P
proof (intro allI impI)
 fix g
 assume (lb, g) ∈ gseq
 then obtain i where g i ∈ A and size (g i) < size (lb i)
 and ∀ j < i. lb j = g j by (auto simp: gseq-iff)
 moreover with lb-minimal
 have g i ∉ ith (eq-upto (BAD P) lb i) i by auto
 ultimately show g ∉ BAD P by blast
qed

If there is at least one bad sequence, then there is also a minimal one.

lemma lower-bound-ex:
∃ f ∈ BAD P. ∀ g. (f, g) ∈ gseq → g ∉ BAD P
using lb-BAD and lb-lower-bound by blast

lemma gseq-conv:
(f, g) ∈ gseq ←→ f ≠ g ∧ (f, g) ∈ geseq
by (auto simp: gseq-def geseq-def dest: less-not-eq)

There is a minimal bad sequence.

lemma mbs:
∃ f ∈ BAD P. ∀ g. (f, g) ∈ gseq → good P g
using lower-bound-ex by (auto simp: gseq-conv geseq-iff)

end

end

end

3 Enumerations of Well-Ordered Sets in Increasing Order

theory Least-Enum
imports Main
begin

locale infinitely-manyI =
 fixes P :: 'a :: wellorder ⇒ bool
 assumes infm: ∀ i. ∃ j > i. P j
begin

Enumerate the elements of a well-ordered infinite set in increasing order.

fun enum :: nat ⇒ 'a where
enum 0 = (LEAST n. P n) |
enum (Suc i) = (LEAST n. n > enum i ∧ P n)

lemma enum-mono:
 shows enum i < enum (Suc i)
 using infm by (cases i, auto) (metis (lifting) LeastI)+

lemma enum-less:
 i < j ⇒ enum i < enum j
 using enum-mono by (metis lift-Suc-mono-less)

lemma enum-P:
 shows P (enum i)
 using infm by (cases i, auto) (metis (lifting) LeastI)+

end

locale infinitely-many2 =
 fixes P :: 'a :: wellorder ⇒ 'a ⇒ bool
 and N :: 'a
 assumes infm: ∀i≥N. ∃j>i. P i j
begin

Enumerate the elements of a well-ordered infinite set that form a chain w.r.t.
a given predicate P starting from a given index N in increasing order.

fun enumchain :: nat ⇒ 'a where
 enumchain 0 = N |
 enumchain (Suc n) = (LEAST m. m > enumchain n ∧ P (enumchain n) m)

lemma enumchain-mono:
 shows N ≤ enumchain i ∧ enumchain i < enumchain (Suc i)
proof (induct i)
 case 0
 then have enumchain 0 ≥ N by simp
 moreover then have ∃m>enumchain 0. P (enumchain 0) m using infm by blast
 ultimately show ?case by auto (metis (lifting) LeastI)
next
 case (Suc i)
 then have N ≤ enumchain (Suc i) by auto
 moreover then have ∃m>enumchain (Suc i). P (enumchain (Suc i)) m using infm by blast
 ultimately show ?case by (auto) (metis (lifting) LeastI)
qed

lemma enumchain-chain:
 shows P (enumchain i) (enumchain (Suc i))
proof (cases i)
 case 0

22
moreover have \(\exists m > \text{enumchain } 0 \cdot P \ (\text{enumchain } 0) \) \(m \) using \text{infdm} by \text{auto}
ultimately show ?thesis by \text{auto} (metis (lifting) \text{LeastI})
next
case \((\text{Suc } i)\)
moreover have \text{enumchain} (\text{Suc } i) > N \text{ using enumchain-mono by (metis le-less-trans)}
moreover then have \(\exists m > \text{enumchain} (\text{Suc } i) . P \ (\text{enumchain} (\text{Suc } i)) \) \(m \) using \text{infdm} by \text{auto}
ultimately show ?thesis by (auto) (metis (lifting) \text{LeastI})
qed
end
end

4 Almost-Full Relations

theory Almost-Full-Relations
imports
 "~/src/HOL/Library/Sublist"
 "~/src/HOL/Library/Ramsey"
 ../Regular-Sets/Regexp-Method
 ../Abstract-Rewriting/Seq
 \text{Least-Enum}
 \text{Minimal-Bad-Sequences}
begin

4.1 Basic Definitions and Facts
definition \text{almost-full-on} :: \(\forall' a \Rightarrow 'a \Rightarrow \text{bool} \Rightarrow 'a \text{ set} \Rightarrow \text{bool} \) where
\text{almost-full-on} \(P \ A \leftrightarrow (\forall f \in \text{SEQ } A. \text{good } P \ f)\)

lemma \text{almost-full-on-UNIV}:
\text{almost-full-on} \ (\lambda- -. \text{True}) \ \text{UNIV}
by (auto simp: \text{almost-full-on-def} \text{good-def})

lemma \text{(in mbs) mbs'}:
\text{assumes} \sim \text{almost-full-on} \ P \ A
\text{shows} \exists m \in \text{BAD } P. \forall g. (m, g) \in \text{gseq} \rightarrow \text{good } P \ g
\text{using} \text{assms and mbs}
\text{unfolding} \text{almost-full-on-def} \text{by blast}

lemma \text{almost-full-onD}:
\text{fixes} f :: \text{nat} \Rightarrow 'a \text{ and } A :: 'a \text{ set}
\text{assumes} \text{almost-full-on} \ P \ A \text{ and } \bigwedge i. f \ i \in A
\text{obtains} i \ j \text{ where } i < j \text{ and } P (f \ i) (f \ j)
\text{using} \text{assms unfolding} \text{almost-full-on-def} \text{by blast}

lemma \text{almost-full-onI} [Pure.intro]:
\((\forall f. \forall i. f i \in A \Rightarrow \text{good } P f) \Rightarrow \text{almost-full-on } P A \)

unfolding almost-full-on-def by blast

lemma almost-full-on-imp-reflp-on:
- **assumes** almost-full-on P A
- **shows** reflp-on P A
- **using** assms by (auto simp: almost-full-on-def reflp-on-def)

lemma almost-full-on-subset:
- **assumes** \(A \subseteq B \Rightarrow \text{almost-full-on } P B \Rightarrow \text{almost-full-on } P A \)
- **by** (auto simp: almost-full-on-def)

lemma almost-full-on-mono:
- **assumes** \(A \subseteq B \) and \(\forall x y. Q x y \Rightarrow P x y \)
- and almost-full-on Q B
- **shows** almost-full-on P A
- **using** assms by (metis almost-full-on-def almost-full-on-subset good-def)

Every sequence over elements of an almost-full set has a homogeneous subsequence.

lemma almost-full-on-imp-homogeneous-subseq:
- **assumes** almost-full-on P A and \(\forall i :: \text{nat}. f i \in A \)
- **shows** \(\exists \phi :: \text{nat}. \forall i j. i < j \rightarrow \phi i < \phi j \land P (f (\phi i)) (f (\phi j)) \)

proof
- **def** \(X \equiv \{\{i, j\} | i j :: \text{nat}. i < j \land P (f i) (f j)\} \)
- **def** \(Y \equiv - X \)
- **def** \(h \equiv \lambda Z. \text{if } Z \in X \text{ then } 0 \text{ else } Suc 0 \)

have \[iff\]: \(\forall x y. h \{x, y\} = 0 \leftrightarrow \{x, y\} \in X \) by (auto simp: h-def)

have \[iff\]: \(\forall x y. h \{x, y\} = Suc 0 \leftrightarrow \{x, y\} \in Y \) by (auto simp: h-def Y-def)

have \(\forall x \in \text{UNIV}. \forall y \in \text{UNIV}. x \neq y \rightarrow h \{x, y\} < 2 \) by (simp add: h-def)

from Ramsey2 [OF infinite-UNIV-nat this] **obtain** I c
- **where** infinite I and c < 2
- **and** \(\forall x \in I. \forall y \in I. x \neq y \rightarrow h \{x, y\} = c \) by blast
- **then** interpret infinitely-many1 \(\lambda i. i \in I \)
- **by** (unfold-locales) (simp add: infinite-nat-iff-unbounded)

have \(c = 0 \lor c = 1 \) **using** \(c < 2 \) by arith

then **show** \(\text{thesis} \)

proof
- **assume** \([simp]: c = 0 \)
- **have** \(\forall i j. i < j \rightarrow P (f (\text{enum } i)) (f (\text{enum } j)) \)

proof (intro allI impI)
- **fix** i j :: nat
- **assume** i < j
- **from** * and enum-P and enum-less [OF \(i < j \)] **have** \(\{\text{enum } i, \text{enum } j\} \in X \) by auto

24
with enum-less [OF ⟨i < j⟩]

show P (f (enum i)) (f (enum j)) by (auto simp: X-def doubleton-eq-iff)

qed

then show ?thesis using enum-less by blast

next

assume [simp]: c = 1

have ∀i j. i < j ⟹ ¬P (f (enum i)) (f (enum j))

proof (intro allI impl)

fix i j :: nat

assume i < j

from * and enum-P and enum-less [OF ⟨i < j⟩] have \{enum i, enum j\} ∈ Y

by auto

with enum-less [OF ⟨i < j⟩]

show ¬P (f (enum i)) (f (enum j)) by (auto simp: Y-def X-def doubleton-eq-iff)

qed

qed

Almost full relations do not admit infinite antichains.

lemma almost-full-on-imp-no-antichain-on:

assumes almost-full-on P A

shows ¬antichain-on P \ f A

proof

assume *: antichain-on P \ f A

then have ∀i. f i ∈ A by simp

with assms have good P \ f by (auto simp: almost-full-on-def)

then obtain i j where i < j and P (f i) (f j)

unfolding good-def by auto

moreover with * have incomparable P (f i) (f j) by auto

ultimately show ?thesis using almost-full-on-PA by (simp add: almost-full-on-def)

qed

qed

If the image of a function is almost-full then also its preimage is almost-full.

lemma almost-full-on-map:

assumes almost-full-on Q B

and h ' A ⊆ B

shows almost-full-on (λx y. Q (h x) (h y)) A (is almost-full-on \ P A)

proof

fix f

assume ∀i::nat. f i ∈ A

then have \bigwedge i. h (f i) ∈ B using \ h ' A ⊆ B: by auto

with [unfolded almost-full-on-def, THEN bspec, of h \ f]

show good ?P f unfolding good-def comp-def by blast

qed

The homomorphic image of an almost-full set is almost-full.
lemma almost-full-on-hom:
 fixes h :: 'a ⇒ 'b
 assumes hom: ∀x y. [x ∈ A; y ∈ A; P x y] ⟹ Q (h x) (h y)
 and af: almost-full-on P A
 shows almost-full-on Q (h ' A)
proof
 fix f :: nat ⇒ 'b
 assume ∀i. f i ∈ h ' A
 then have ∀i. ∃x. x ∈ A ∧ f i = h x by (auto simp: image_def)
 from choice [OF this] obtain g
 where *: ∀i. g i ∈ A ∧ f i = h (g i) by blast
 show good Q f
proof (rule ccontr)
 assume bad: bad Q f
 { fix i j :: nat
 assume i < j
 from bad have ¬ Q (f i) (f j) using ⟨i < j⟩ by (auto simp: good_def)
 with hom have ¬ P (g i) (g j) using * by auto }
 then have bad P g by (auto simp: good_def)
 with af and * show False by (auto simp: good_def almost-full-on_def)
qed
qed

The monomorphic preimage of an almost-full set is almost-full.

lemma almost-full-on-mon:
 assumes mon: ∀x y. [x ∈ A; y ∈ A] ⟹ P x y = Q (h x) (h y) bij_betw h A B
 and af: almost-full-on Q B
 shows almost-full-on P A
proof
 fix f :: nat ⇒ 'a
 assume *: ∀i. f i ∈ A
 then have **: ∀i. (h ◦ f) i ∈ B using mon by (auto simp: bij_betw_def)
 show good P f
proof (rule ccontr)
 assume bad: bad P f
 { fix i j :: nat
 assume i < j
 from bad have ¬ P (f i) (f j) using ⟨i < j⟩ by (auto simp: good_def)
 with mon have ¬ Q (h (f i)) (h (f j))
 using * by (auto simp: bij_betw_def inj_on_def) }
 then have bad Q (h ◦ f) by (auto simp: good_def)
 with af and ** show False by (auto simp: good_def almost-full-on_def)
qed
qed

Every total and well-founded relation is almost-full.

lemma total-on-and-wfp-on-imp-almost-full-on:
 assumes total-on P A and wfp-on P A
 shows almost-full-on P" A

26
proof (rule ccontr)
assume ¬ almost-full-on \(P \equiv A \)
then obtain \(f :: \text{nat} \rightarrow \mathcal{P}(\text{nat}) \)
and \(\forall i\ j. \ i < j \rightarrow f(i)
\neq f(j) \)
unfolding almost-full-on-def by (auto dest: badE)
with \(\text{total-on} \ A \)
have \(\forall i\ j. \ i < j \rightarrow P(f(i)) \land P(f(j)) \)
unfolding total-on-def by blast
then have \(\forall i\ j. \ i < j \tablecolumn{0}{-} P(f(j)) \land P(f(i)) \)
unfolding total-on-def by blast
have False
unfolding wfp-on-def by blast
qed

4.2 Adding a Bottom Element to a Set

definition with-bot :: \('a set \Rightarrow 'a option set \)
where
\(A_{\bot} = \{\text{None}\} \cup \text{Some ' A} \)

lemma with-bot-iff [iff]:
\(\text{Some x} \in A_{\bot} \tablecolumn{0}{-} x \in A \)
by (auto simp: with-bot-def)

lemma NoneI [simp, intro]:
\(\text{None} \in A_{\bot} \)
by (simp add: with-bot-def)

lemma not-None-the-mem [simp]:
\(x \neq \text{None} \rightarrow (\forall x. \ x \in A \rightarrow x \in A_{\bot}) \)
by auto

lemma with-bot-cases:
\(u \in A_{\bot} \rightarrow (\forall x. \ x \in A \rightarrow u = \text{Some x} \rightarrow P) \rightarrow (u = \text{None} \rightarrow P) \rightarrow P \)
by auto

lemma with-bot-empty-conv [iff]:
\(A_{\bot} = \{\text{None}\} \rightarrow A = \{\} \)
by (auto elim: with-bot-cases)

lemma with-bot-UNIV [simp]:
\(UNIV_{\bot} = UNIV \)
proof (rule set-eqI)
fix \(x :: 'a option \)
show \(x \in UNIV_{\bot} \rightarrow x \in UNIV \)
by (cases x) auto
qed

4.3 Adding a Bottom Element to an Almost-Full Set

fun
\(\text{option-le :: ('a } \Rightarrow \text{ 'a } \Rightarrow \text{ bool }) \Rightarrow \text{ 'a option } \Rightarrow \text{ 'a option } \Rightarrow \text{ bool} \)
where
option-le P None y = True |
option-le P (Some x) None = False |
option-le P (Some x) (Some y) = P x y

lemma None-imp-good-option-le [simp]:
 assumes f i = None
 shows good (option-le P) f
 by (rule goodI [of i Suc i]) (auto simp: assms)

lemma almost-full-on-with-bot:
 assumes almost-full-on P A
 shows almost-full-on (option-le P) A⊥ (is almost-full-on ?P ?A)
proof
 fix f :: nat ⇒ 'a option
 assume *: ∀ i. f i ∈ ?A
 show good ?P f
 proof (cases ∀ i. f i = None)
 case True
 then have **: ∨ i. Some (the (f i)) = f i
 and ∨ i. the (f i) ∈ A using * by auto
 with almost-full-onD [OF assms, of f] obtain i j where i < j
 and P (the (f i)) (the (f j)) by auto
 then have ?P (Some (the (f i))) (Some (the (f j))) by simp
 then have ?P (f i) (f j) unfolding ** .
 with i < j show good ?P f by (auto simp: good-def)
 qed auto
qed

4.4 Disjoint Union of Almost-Full Sets

fun
 sum-le :: ('a ⇒ 'a ⇒ bool) ⇒ ('b ⇒ 'b ⇒ bool) ⇒ 'a + 'b ⇒ 'a + 'b ⇒ bool
where
 sum-le P Q (Inl x) (Inl y) = P x y |
 sum-le P Q (Inr x) (Inr y) = Q x y |
 sum-le P x y = False

lemma not-sum-le-cases:
 assumes ¬ sum-le P Q a b
 and ∨ x y. [a = Inl x; b = Inl y; ¬ P x y] ⇒ thesis
 and ∨ x y. [a = Inr x; b = Inr y; ¬ Q x y] ⇒ thesis
 and ∨ x y. [a = Inl x; b = Inr y] ⇒ thesis
 and ∨ x y. [a = Inr x; b = Inl y] ⇒ thesis
 shows thesis
 using assms by (cases a b rule: sum.exhaust [case-product sum.exhaust]) auto

When two sets are almost-full, then their disjoint sum is almost-full.

lemma almost-full-on-Plus:
 assumes almost-full-on P A and almost-full-on Q B
shows almost-full-on (sum-le P Q) (A <+> B) (is almost-full-on ?P ?A)
proof
 fix f :: nat ⇒ ('a + 'b)
 let ?I = f - 'Inl ' A
 let ?J = f - 'Inr ' B
 assume ∀ i. f i ∈ ?A
 then have "?J = (UNIV::nat set) − ?I" by (fastforce)
 show good ?P f
 proof (rule ccontr)
 assume bad: bad ?P f
 show False
 proof (cases finite ?I)
 assume finite ?I
 then have infinite ?J by (auto simp: *)
 then interpret infinitely-many1 λ i. f i ∈ Inr ' B
 by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
 have [dest]: ∀ i x. f (enum i) = Inl x ⇒ False
 using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)
 let ?f = λ i. projr (f (enum i))
 have B: ∀ i. ?f i ∈ B using enum-P by (auto simp: image-iff) (metis sum.sel(2))
 { fix i j :: nat
 assume i < j
 then have enum i < enum j using enum-less by auto
 with bad have ¬ ?P (f (enum i)) (f (enum j)) by (auto simp: good-def)
 then have ¬ Q (?i) (?f) by (auto elim: not-sum-le-cases) }
 then have bad Q ?f by (auto simp: good-def)
 moreover from almost-full-on Q B and B
 have good Q ?f by (auto simp: good-def almost-full-on-def)
 ultimately show False by blast
 next
 assume infinite ?I
 then interpret infinitely-many1 λ i. f i ∈ Inl ' A
 by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
 have [dest]: ∀ i x. f (enum i) = Inr x ⇒ False
 using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)
 let ?f = λ i. projl (f (enum i))
 have A: ∀ i. ?f i ∈ A using enum-P by (auto simp: image-iff) (metis sum.sel(1))
 { fix i j :: nat
 assume i < j
 then have enum i < enum j using enum-less by auto
 with bad have ¬ ?P (?i) (?f) by (auto simp: good-def)
 then have ¬ P (?i) (?f) by (auto elim: not-sum-le-cases) }
 then have bad P ?f by (auto simp: good-def)
 moreover from almost-full-on P A and A
 have good P ?f by (auto simp: good-def almost-full-on-def)
 ultimately show False by blast
 qed
4.5 Dickson’s Lemma for Almost-Full Relations

When two sets are almost-full, then their Cartesian product is almost-full.

definition

\[prod-le :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow ('b \Rightarrow 'b \Rightarrow bool) \Rightarrow 'a \times 'b \Rightarrow 'a \times 'b \Rightarrow bool \]

where

\[prod-le P1 P2 = (\lambda (p1, p2) (q1, q2). P1 p1 q1 \land P2 p2 q2) \]

lemma prod-le-True [simp]:

\[prod-le P (\lambda - - True) a b = P (fst a) (fst b) \]

by (auto simp: prod-le-def)

lemma almost-full-on-Sigma:

assumes almost-full-on P1 A1 and almost-full-on P2 A2

shows almost-full-on (prod-le P1 P2) (A1 \times A2) (is almost-full-on ?P ?A)

proof (rule ccontr)

assume \(\neg \) almost-full-on ?P ?A

then obtain f where f: \(\forall i. f i \in ?A \)

and bad: bad ?P f by (auto simp: almost-full-on-def)

let \(?W = \lambda x y. P1 (fst x) (fst y) \)

let \(?B = \lambda x y. P2 (snd x) (snd y) \)

from f have fst: \(\forall i. fst (f i) \in A1 \) and snd: \(\forall i. snd (f i) \in A2 \)

by (metis SigmaE fst-conv, metis SigmaE snd-conv)

from almost-full-on-imp-homogeneous-subseq [OF assms (1) fst]

obtain \(\varphi :: nat \Rightarrow nat \) where mono: \(\forall i. j. i < j \Rightarrow \varphi i < \varphi j \)

and *: \(\forall i. j. i < j \Rightarrow ?W (f (\varphi i)) (f (\varphi j)) \) by auto

from snd have \(\forall i. snd (f (\varphi i)) \in A2 \) by auto

then have snd \(\circ f \circ \varphi \in SEQ A2 \) by auto

with assms(2) have good P2 (snd \(\circ f \circ \varphi \)) by (auto simp: almost-full-on-def)

then obtain i j :: nat

where i < j and ?B (f (\varphi i)) (f (\varphi j)) by auto

with * [OF i < j] have ?P (f (\varphi i)) (f (\varphi j)) by (simp add: case-prod-beta prod-le-def)

with mono [OF i < j] and bad show False by auto

qed

4.6 Higman’s Lemma for Almost-Full Relations

lemma Nil-imp-good-list-emb [simp]:

assumes f i = []

shows good (list-emb P) f

proof (rule ccontr)

assume bad (list-emb P) f

moreover have (list-emb P) (f i) (f (Suc i))

unfolding assms by auto

ultimately show False by auto

qed
unfolding good-def by auto

qed

lemma ne-lists:
 assumes xs ≠ [] and xs ∈ lists A
 shows hd xs ∈ A and tl xs ∈ lists A
 using assms by (case-tac [] xs) simp-all

lemma almost-full-on-lists:
 assumes almost-full-on P A
 shows almost-full-on (list-emb P) (lists A) (is almost-full-on ?P ?A)
 proof (rule contr)
 interpret mbs ?A .
 assume ¬ ?thesis
 from mbs ′ [OF this] obtain m
 where bad: m ∈ BAD ?P
 and min: ∀ g. (m, g) ∈ gseq ⇒ good ?P g ...
 then have lists: ∃ i. m i ∈ lists A
 and ne: ∃ i. m i ≠ [] by auto
 def h ≡ λ i. hd (m i)
 def t ≡ λ i. tl (m i)
 have m: ∃ i. m i = h i # t i using ne by (simp add: h-def t-def)
 have ∀ i. h i ∈ A using ne-lists [OF ne] and lists by (auto simp add: h-def)
 from almost-full-on-imp-homogeneous-subseq [OF assms this] obtain ϕ :: nat ⇒ nat
 where less: ∃ i j. i < j ⇒ ϕ i < ϕ j
 and P: ∀ i j. i < j ⇒ P (h (ϕ i)) (h (ϕ j)) by blast
 have bad-t: bad ?P (t ∘ ϕ)
 proof
 assume good ?P (t ∘ ϕ)
 then obtain i j where i < j and ?P (t (ϕ i)) (t (ϕ j)) by auto
 moreover with P have P (h (ϕ i)) (h (ϕ j)) by blast
 ultimately have ?P (m (ϕ i)) (m (ϕ j))
 by (subst (1 2) m) (rule list-emb-Cons2, auto)
 with less and (i < j) have good ?P m by (auto simp: good-def)
 with bad show False by blast
 qed
 def m′ ≡ λ i. if i < ϕ 0 then m i else t (ϕ (i − ϕ 0))
 have m′-less: ∃ i. i < ϕ 0 ⇒ m′ i = m i by (simp add: m′-def)
 have m′-geq: ∃ i. i ≥ ϕ 0 ⇒ m′ i = m (ϕ (i − ϕ 0)) by (simp add: m′-def)
 have ∀ i. m′ i ∈ lists A using ne-lists [OF ne] and lists by (auto simp: m′-def t-def)
moreover have \(\text{length} (m' (\varphi 0)) < \text{length} (m (\varphi 0)) \) using ne by (simp add: t-def m'-geq)
moreover have \(\forall j < \varphi 0. \ m' j = m j \) by (auto simp: m'-less)
ultimately have \((m, m') \in \text{gseq} \) using lists by (auto simp: gseq-def)
moreover have bad ?P m'
proof
 assume good ?P m'
 then obtain \(i j \) where \(i < j \) and emb: \(?P (m' i) (m' j) \) by (auto simp: good-def)
 { assume \(j < \varphi 0 \)
 with \(i < j \) and emb have \(?P (m i) (m j) \) by (auto simp: m'-less)
 moreover
 { assume \(\varphi 0 \leq i \)
 with \(i < j \) and emb have \(t (\varphi (i - \varphi 0)) \) \(t (\varphi (j - \varphi 0)) \)
 and \(i - \varphi 0 < j - \varphi 0 \) by (auto simp: m'-geq)
 with bad-t have False by auto }
 moreover
 { assume \(i < \varphi 0 \) and \(\varphi 0 \leq j \)
 with \(i < j \) and bad have False by auto }
 from list-emb-Cons [OF this, of \((\varphi (j - \varphi 0)) \)]
 have \(?P (m i) (m (\varphi (j - \varphi 0))) \) using ne by (simp add: h-def t-def)
 moreover have \(i < \varphi 0 \)
 using less [of \(0 j - \varphi 0 \) and \(i < \varphi 0 \) and \(\varphi 0 \leq j \)]
 by (cases \(j = \varphi 0 \)) auto
 ultimately have False using bad by blast }
 ultimately have False using min by blast
qed
ultimately show False using min by blast
qed

lemma list-emb-eq-length-induct [consumes 2, case-names Nil Cons]:
assumes \(\text{length} \ xs = \text{length} \ ys \)
and \(\text{list-emb} P \ xs \ys \)
and \(Q \[\[\]
and \(\forall x y \ xs \ys. P x y; \text{list-emb} P \ xs \ys; Q \ xs \ys \) \(\Rightarrow \) \(Q (x#xs) (y#ys) \)
shows \(Q \ xs \ys \)
using \(\text{assms} (2, 1, 3-) \) by (induct) (auto dest: list-emb-length)

lemma list-emb-eq-length-P:
assumes \(\text{length} \ xs = \text{length} \ ys \)
and \(\text{list-emb} P \ xs \ys \)
shows \(\forall i<\text{length} \ xs. P (xs ! i) (ys ! i) \)
using \(\text{assms} \)
proof (induct rule: list-emb-eq-length-induct)
case \((\text{Cons} \ x \ y \ xs \ys) \)
show ?case
proof (intro allI impI)
4.7 Special Case: Finite Sets

Every reflexive relation on a finite set is almost-full.

lemma finite-almost-full-on:
- **assumes** finite: finite A
- and refl: reflp-on P A
- **shows** almost-full-on P A

proof
- fix f :: nat ⇒ 'a
- assume *: ∀ i. f i ∈ A
- let ?I = UNIV :: nat set
- have f ' ?I ⊆ A using * by auto
- with finite and finite-subset have I: finite (f ' ?I) by blast
- have infinite ?I by auto
- from pigeonhole-infinite [OF this 1]
- obtain k where infinite {j. f j = f k} by auto
- then obtain l where k < l and f l = f k
- unfolding infinite-nat-iff-unbounded by auto
- then have P (f k) (f l) using refl and * by (auto simp: reflp-on-def)
- with ⟨k < l⟩ show good P f by (auto simp: good-def)

qed

lemma eq-almost-full-on-finite-set:
- **assumes** finite A
- **shows** almost-full-on (op =) A
- using finite-almost-full-on [OF assms, of op =]
 by (auto simp: reflp-on-def)

4.8 Natural Numbers

lemma almost-full-on-UNIV-nat:
- almost-full-on (op ≤) (UNIV :: nat set)

proof
- let ?P = sublisteq :: bool list ⇒ bool list ⇒ bool
- have *: length ' (UNIV :: bool list set) = (UNIV :: nat set)
 by (metis Ex-list-of-length surj-def)
- have almost-full-on (op ≤) (length ' (UNIV :: bool list set))
 by (rule almost-full-on-hom)
- fix xs ys :: bool list
- assume ?P xs ys
- then show length xs ≤ length ys
 by (metis list-emb-length)

next
have finite (UNIV :: bool set) by auto
from almost-full-on-lists [OF eq-almost-full-on-finite-set [OF this]]
 show almost-full-on ?P UNIV unfolding lists-UNIV .
qed
then show ?thesis unfolding * .
qed

4.9 Further Results

lemma af-trans-imp-wf:
 assumes af: almost-full-on P A
 and trans: transp-on P A
 shows wfp-on (strict P) A
proof –
 show wfp-on (strict P) A
proof (unfold wfp-on-def, rule notI)
 assume ∃f. ∀i. f i ∈ A ∧ strict P (f (Suc i)) (f i)
 then obtain f where *: chain-on ((strict P)⁻¹⁻¹) f A by blast
 from chain-on-transp-on-less [OF this]
 and transp-on-strict [THEN transp-on-converse, OF trans]
 have ∀i j. i < j −→ ¬ P (f i) (f j) by blast
 with af show False
 using * by (auto simp: almost-full-on-def good-def)
qed

lemma wf-and-no-antichain-imp-qo-extension-wf:
 assumes wf: wfp-on (strict P) A
 and anti: ¬ (∃f. antichain-on P f A)
 and subrel: ∀x ∈ A. ∀y ∈ A. P x y −→ Q x y
 and qo: qo-on Q A
 shows wfp-on (strict Q) A
proof (rule ccontr)
 have transp-on (strict Q) A
 using qo unfolding go-on-def transp-on-def by blast
then have *: transp-on ((strict Q)⁻¹⁻¹) A by (rule transp-on-converse)
 assume ¬ wfp-on (strict Q) A
then obtain f :: nat ⇒ 'a where A: ∀i. f i ∈ A
 and ∀i. strict Q (f (Suc i)) (f i) unfolding wfp-on-def by blast+
then have chain-on ((strict Q)⁻¹⁻¹) f A by auto
from chain-on-transp-on-less [OF this *]
 have *: ∀i j. i < j −→ P (f i) (f j)
 using subrel and A by blast
show False
proof (cases)
 assume ∃k. ∀i > k. ∃j > i. P (f j) (f i)
then obtain & where ∀i > k. ∃j > i. P (f j) (f i) by auto
from subchain [of k - f, OF this] obtain g
 where ∀i j. i < j −→ g i < g j
and \(\forall i. P (f (g (\text{Suc } i)))) (f (g i))\) by auto

with \(\star\) have \(\forall i. \text{strict } P (f (g (\text{Suc } i)))) (f (g i))\) by blast

with \(\text{wf } [\text{unfolded wfp-on-def not-ex}, \text{THEN spec, of } \lambda i. f (g i)]\) and \(A\)

show False by fast

next

assume \(\neg (\exists k. \forall i > k. \exists j > i. P (f j) (f i))\)

then have \(\forall k. \exists i > k. \forall j > i. \neg P (f j) (f i)\) by auto

from choice [OF this] obtain \(h\)

where \(\forall k. h \cdot k > k\)

and \(\star\star\) \(\forall k. (\forall j > h \cdot k. \neg P (f j) (f (h k)))\) by auto

def [simp]: \(\varphi \equiv \text{li} (h ^{\text{Suc } i} 0)\)

have \(\forall i. \varphi i < \varphi (\text{Suc } i)\)

using \(\forall k. h \cdot k > k\) by (induct-tac \(i\)) auto

then have mono: \(\forall i j. i < j \implies \varphi i < \varphi j\) by (metis lift-Suc mono-less)

then have \(\forall i j. i < j \implies \neg P (f (\varphi j)) (f (\varphi i))\)

using \(\star\star\) by auto

with mono [THEN \(\star\)]

have \(\forall i j. i < j \implies \text{incomparable } P (f (\varphi j)) (f (\varphi i))\) by blast

moreover have \(\exists i j. i < j \land \neg \text{incomparable } P (f (\varphi i)) (f (\varphi j))\)

using anti [unfolded not-ex, THEN spec, of \(\lambda i. f (\varphi i)\)] and \(A\) by blast

ultimately show False by blast

qed

qed

lemma every-go-extension-wf-imp-af:

assumes ext: \(\forall Q. (\forall x \in A. \forall y \in A. P x y \implies Q x y) \land qo-on Q A \implies wfp-on (\text{strict } Q) A\)

and qo-on Q P A

shows almost-full-on P A

proof

from qo-on P A:

have refl: reflp-on P A

and trans: transp-on P A

by (auto intro: qo-on-imp-reflp-on qo-on-imp-transp-on)

fix \(f:: \text{nat} \Rightarrow 'a\)

assume \(\forall i. f i \in A\)

then have \(A:: \forall i. f i \in A\) ..

show good P \(f\)

proof (rule excontr)

assume \(\neg \text{thesis}\)

then have bad: \(\forall i j. i < j \implies \neg P (f i) (f j)\) by (auto simp: good-def)

then have \(\star:: \forall i j. P (f i) (f j) \implies i \geq j\) by (metis not-leE)

def [simp]: \(D \equiv \lambda x y. \exists i. x = f (\text{Suc } i) \land y = f i\)

def \(P'\) \(\equiv \text{restrict-to } P A\)

def [simp]: \(Q \equiv (\sup P' D)\star\star\)

have \(\star\star:: \forall i j. (D OO P'\star\star)\star\star (f i) (f j) \implies i > j\)
proof
 fix i j
 assume \((D OO P'^{**})^{++} (f i) (f j)\)
 then show \(i > j\)
 apply (induct f i f j arbitrary: j)
 apply (insert A, auto dest!: simp: \(P'^{**} def\) refl-on-restrict-to-rtranclp [OF refl trans])
 apply (metis * dual-order.strict-trans1 less-Suc-eq-le refl reflp-on-def)
 by (metis le-imp-less-Suc less-trans)
qed

have \(\forall x \in A. \forall y \in A. P \ x \ y \rightarrow Q x y\) by (auto simp: \(P'^{**}\) def)
moreover have \(qo-on Q A\) by (auto simp: qo-on-def reflp-on-def transp-on-def)
ultimately have \(wfp-on (strict Q) A\)
using ext [THEN spec, of Q] by blast
moreover have \(\forall i. f i \in A \land strict Q (f (Suc i)) (f i)\)
proof
 fix i
 have \(\neg Q (f i) (f (Suc i))\)
 proof
 assume \(Q (f i) (f (Suc i))\)
 then have \((sup P' D)^{**} (f i) (f (Suc i))\) by auto
 moreover have \((sup P' D)^{**} = sup (P'^{**}) \((P'^{**} OO (D OO P'^{**}))^{++}\)\)
 proof
 have \(\bigwedge A B. (A \cup B)^+ = A^+ \cup A^+ O (B O A^+)\) by regexp
 from this [to-pred] show \(?thesis\) by blast
 qed
 ultimately have \(sup (P'^{**}) \((P'^{**} OO (D OO P'^{**}))^{++}\) (f i) (f (Suc i))\)
 by simp
 then have \((P'^{**} OO (D OO P'^{**}))^{++} (f i) (f (Suc i))\) by auto
 then have \(Suc i < i\)
 using ** apply auto
 by (metis (lifting, mono-tags) less-le relcomp.pre relcomp.pre tranclp-into-tranclp2)
 then show \(False\) by auto
qed
 with \(A \ [of i]\) show \(f i \in A \land strict Q (f (Suc i)) (f i)\) by auto
 qed
 ultimately show \(False\) unfolding wfp-on-def by blast
qed

end

5 Well-Quasi-Orders

theory Well-Quasi-Orders
imports Almost-Full-Relations
begin
5.1 Basic Definitions

definition `wqo-on :: ('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ bool` where

\[\text{wqo-on } P A \iff \text{transp-on } P A \land \text{almost-full-on } P A \]

lemma `wqo-on-UNIV`:

\[\text{wqo-on } (\lambda x. \text{True}) \text{ UNIV} \]

using `almost-full-on-UNIV` by (auto simp: `wqo-on-def` `transp-on-def`)

lemma `wqo-onI [Pure.intro]`:

\[\text{transp-on } P A ; \text{almost-full-on } P A \implies \text{wqo-on } P A \]

unfolding `wqo-on-def` `almost-full-on-def` by blast

lemma `wqo-on-imp-reflp-on`:

\[\text{wqo-on } P A \implies \text{reflp-on } P A \]

using `almost-full-on-imp-reflp-on` by (auto simp: `wqo-on-def`)

lemma `wqo-on-imp-transp-on`:

\[\text{wqo-on } P A \implies \text{transp-on } P A \]

by (auto simp: `wqo-on-def`)

lemma `wqo-on-imp-almost-full-on`:

\[\text{wqo-on } P A \implies \text{almost-full-on } P A \]

by (auto simp: `wqo-on-def`)

lemma `wqo-on-imp-qo-on`:

\[\text{wqo-on } P A \implies \text{qo-on } P A \]

by (metis `qo-on-def` `wqo-on-imp-reflp-on` `wqo-on-imp-transp-on`)

lemma `wqo-on-imp-good`:

\[\forall i. f i \in A \implies \text{good } P f \]

by (auto simp: `wqo-on-def` `almost-full-on-def`)

lemma `wqo-on-subset`:

\[A \subseteq B \implies \text{wqo-on } P B \implies \text{wqo-on } P A \]

using `almost-full-on-subset [of A B P]`

and `transp-on-subset [of A B P]`

unfolding `wqo-on-def` by blast

5.2 Equivalent Definitions

Given a quasi-order \(P \), the following statements are equivalent:

1. \(P \) is a almost-full.
2. \(P \) does neither allow decreasing chains nor antichains.
3. Every quasi-order extending \(P \) is well-founded.

lemma `wqo-af-conv`:
assumes $qo-on \ P \ A$
shows $wqo-on \ P \ A \iff \ almost-full-on \ P \ A$
using $assms$ by (metis $qo-on-def$ $wqo-on-def$)

lemma $wqo-wf-and-no-antichain-conv$:
assumes $qo-on \ P \ A$
shows $wqo-on \ P \ A \iff wfp-on (strict \ P) \ A \land \ \neg \exists \ f. \ antichain-on \ P \ f \ A$
unfolding $wqo-af-conv$ [OF $assms$]
using $af-trans-imp-wf$ [OF $assms$ [THEN $qo-on-imp-transp-on$]]
and $almost-full-on-imp-no-antichain-on$ [of $P \ A$]
and $wf-and-no-antichain-imp-qo-extension-wf$ [of $P \ A$]
and $every-qo-extension-wf-imp-af$ [OF $-assms$]
by blast

lemma $wqo-extensions-wf-conv$:
assumes $qo-on \ P \ A$
shows $wqo-on \ P \ A \iff (\forall Q. (\forall x \in A. \forall y \in A. \ P \ x \ y \rightarrow Q \ x \ y) \land qo-on \ Q \ A \rightarrow wfp-on (strict \ Q) \ A)$
unfolding $wqo-af-conv$ [OF $assms$]
using $af-trans-imp-wf$ [OF $assms$ [THEN $qo-on-imp-transp-on$]]
and $almost-full-on-imp-no-antichain-on$ [of $P \ A$]
and $wf-and-no-antichain-imp-qo-extension-wf$ [of $P \ A$]
and $every-qo-extension-wf-imp-af$ [OF $-assms$]
by blast

lemma $wqo-on-imp-wfp-on$:
\[wqo-on \ P \ A \implies wfp-on (strict \ P) \ A \]
by (metis (no-types) $wqo-on-imp-qo-on$ $wqo-wf-and-no-antichain-conv$)

The homomorphic image of a wqo set is wqo.

lemma $wqo-on-hom$:
assumes $transp-on \ Q (h \ A)$
and $\forall x \in A. \forall y \in A. \ P \ x \ y \rightarrow Q (h \ x) (h \ y)$
and $wqo-on \ P \ A$
shows $wqo-on \ Q (h \ A)$
using $assms$ and $almost-full-on-hom$ [of $A \ P \ Q \ h$]
unfolding $wqo-on-def$ by blast

The monomorphic preimage of a wqo set is wqo.

lemma $wqo-on-mon$:
assumes $*: \forall x \in A. \forall y \in A. \ P \ x \ y \iff Q (h \ x) (h \ y)$
and bij: $bij-betw \ h \ A \ B$
and wqo: $wqo-on \ Q \ B$
shows $wqo-on \ P \ A$
proof –
have $transp-on \ P \ A$
proof
fix $x \ y \ z$ assume [intro]: $x \in A$ $y \in A$ $z \in A$
and $P \ x \ y$ and $P \ y \ z$

38
with ∗ have Q (h x) (h y) and Q (h y) (h z) by blast+
with wqo-on-imp-transp-on [OF wqo] have Q (h x) (h z)
using bij by (auto simp: bij-betw-def transp-on-def)
with ∗ show P x z by blast
qed
with assms and almost-full-on-mon [of A P Q h]
show ?thesis unfolding wqo-on-def by blast
qed

5.3 A Type Class for Well-Quasi-Orders

In a well-quasi-order (wqo) every infinite sequence is good.

class wqo = preorder +
assumes good: good (op ≤) f

lemma wqo-on-class [simp, intro]:
wqo-on (op ≤) (UNIV :: ('a :: wqo) set)
using good by (auto simp: wqo-on-def transp-on-def almost-full-on-def dest: order-trans)

lemma wqo-on-UNIV-class-wqo [intro!]:
wqo-on P UNIV ⇒ class.wqo P (strict P)
by (unfold-locales) (auto simp: wqo-on-def almost-full-on-def, unfold transp-on-def, blast)

The following lemma converts between wqo-on (for the special case that the
domain is the universe of a type) and the class predicate class.wqo.

lemma wqo-on-UNIV-conv:
wqo-on P UNIV ⇐⇒ class.wqo P (strict P) (is ?lhs = ?rhs)
proof
assume ?lhs then show ?rhs by auto
next
assume ?rhs then show ?lhs
unfolding class.wqo-def class.preorder-def class.wqo-axioms-def
by (auto simp: wqo-on-def almost-full-on-def transp-on-def)
qed

The strict part of a wqo is well-founded.

lemma (in wqo) wfP (op <)
proof −
 have class.wqo (op ≤) (op <) ..
 hence wqo-on (op ≤) UNIV
 unfolding less-le-not-le [abs-def] wqo-on-UNIV-conv [symmetric].
 from wqo-on-imp-wfp-on [OF this]
 show ?thesis unfolding less-le-not-le [abs-def] wfp-on-UNIV.
qed

lemma wqo-on-with-bot:
assumes \(wqo\text{-}on\ P\ A \)

shows \(wqo\text{-}on\ (option\text{-}le\ P)\ A \perp\ (is\ wqo\text{-}on\ ?P\ ?A) \)

proof –

\[
\begin{array}{l}
\{
\text{from assms have trans [unfolded transp-on-def]: transp-on P A}
\end{array}
\]

\[
\begin{array}{l}
\text{by (auto simp: wqo-on-def)}
\end{array}
\]

\[
\begin{array}{l}
\text{have transp-on ?P ?A}
\end{array}
\]

\[
\begin{array}{l}
\text{by (auto simp: transp-on-def elim!: with-bot-cases, insert trans) blast }
\end{array}
\]

moreover

\[
\begin{array}{l}
\text{from assms and almost-full-on-with-bot}
\end{array}
\]

\[
\begin{array}{l}
\text{have almost-full-on ?P ?A by (auto simp: wqo-on-def)}
\end{array}
\]

ultimately

show \(\text{thesis by (auto simp: wqo-on-def)} \)

qed

lemma \(wqo\text{-}on\text{-}option\text{-}UNIV \) [intro]:

\(wqo\text{-}on\ P\ \text{UNIV} \implies wqo\text{-}on\ (option\text{-}le\ P)\ \text{UNIV} \)

using \(wqo\text{-}on\text{-}with\text{-}bot \) [of P \(\text{UNIV} \)] by simp

When two sets are wqo, then their disjoint sum is wqo.

lemma \(wqo\text{-}on\text{-}Plus: \)

assumes \(wqo\text{-}on\ P\ A \) and \(wqo\text{-}on\ Q\ B \)

shows \(wqo\text{-}on\ (sum\text{-}le\ P\ Q)\ (A <+> B)\ (is\ wqo\text{-}on\ ?P\ ?A) \)

proof –

\[
\begin{array}{l}
\{
\text{from assms have trans [unfolded transp-on-def]: transp-on P A transp-on Q B}
\end{array}
\]

\[
\begin{array}{l}
\text{by (auto simp: wqo-on-def)}
\end{array}
\]

\[
\begin{array}{l}
\text{have transp-on ?P ?A}
\end{array}
\]

\[
\begin{array}{l}
\text{unfolding transp-on-def by (auto, insert trans) (blast+)}
\end{array}
\]

moreover

\[
\begin{array}{l}
\text{from assms and almost-full-on-Plus have almost-full-on ?P ?A by (auto simp: wqo-on-def)}
\end{array}
\]

ultimately

show \(\text{thesis by (auto simp: wqo-on-def)} \)

qed

lemma \(wqo\text{-}on\text{-}sum\text{-}UNIV \) [intro]:

\(wqo\text{-}on\ P\ \text{UNIV} \implies wqo\text{-}on\ Q\ \text{UNIV} \implies wqo\text{-}on\ (sum\text{-}le\ P\ Q)\ \text{UNIV} \)

using \(wqo\text{-}on\text{-}Plus \) [of P \(\text{UNIV} \) Q \(\text{UNIV} \)] by simp

5.4 Dickson’s Lemma

lemma \(wqo\text{-}on\text{-}Sigma: \)

fixes \(A1 :: 'a\ \text{set} \) and \(A2 :: 'b\ \text{set} \)

assumes \(wqo\text{-}on\ P1\ A1 \) and \(wqo\text{-}on\ P2\ A2 \)

shows \(wqo\text{-}on\ (prod\text{-}le\ P1\ P2)\ (A1 \times A2)\ (is\ wqo\text{-}on\ ?P\ ?A) \)

proof –

\[
\begin{array}{l}
\{
\text{from assms have transp-on P1 A1 and transp-on P2 A2 by (auto simp: wqo-on-def)}
\end{array}
\]

\[
\begin{array}{l}
\text{hence transp-on ?P ?A unfolding transp-on-def prod-le-def by blast }
\end{array}
\]

40
moreover
 { from assms and almost-full-on-Sigma [of P1 A1 P2 A2]
 have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)
qed

lemmas dickson = wqo-on-Sigma

lemma wqo-on-prod-UNIV [intro]:
 wqo-on P UNIV \implies wqo-on Q UNIV \implies wqo-on (prod-le P Q) UNIV
using wqo-on-Sigma [of UNIV Q UNIV] by simp

5.5 Higman’s Lemma

lemma transp-on-list-emb:
 assumes transp-on P A
 shows transp-on (list-emb P) (lists A)
 using assms and list-emb-trans [of P A]
 unfolding transp-on-def by blast

lemma wqo-on-lists:
 assumes wqo-on P A shows wqo-on (list-emb P) (lists A)
 using assms and almost-full-on-lists
 and transp-on-list-emb by (auto simp: wqo-on-def)

lemmas higman = wqo-on-lists

lemma wqo-on-list-UNIV [intro]:
 wqo-on P UNIV \implies wqo-on (list-emb P) UNIV
using wqo-on-lists [of P UNIV] by simp

Every reflexive and transitive relation on a finite set is a wqo.

lemma finite-wqo-on:
 assumes finite A and refl: reflp-on P A and transp-on P A
 shows wqo-on P A
 using assms and finite-almost-full-on by (auto simp: wqo-on-def)

lemma finite-eq-wqo-on:
 assumes finite A
 shows wqo-on (op =) A
 using finite-wqo-on [OF assms, of op =]
 by (auto simp: reflp-on-def transp-on-def)

lemma wqo-on-lists-over-finite-sets:
 wqo-on (list-emb (op =)) (UNIV::(a::finite) list set)
 using wqo-on-lists [OF finite-eq-wqo-on [OF finite [of UNIV::(a::finite) set]]]
 by simp
lemma wqo-on-map:
fixes P and Q and h
defines \(P' \equiv \lambda x y. P x y \land Q (h x) (h y) \)
assumes wqo-on P A
and wqo-on Q B
and \(\text{subset}: h \upharpoonright A \subseteq B \)
shows wqo-on P' A

proof
let \(?Q = \lambda x y. Q (h x) (h y) \)
from \(\langle wqo-on P A \rangle \) have transp-on P A
by (rule wqo-on-imp-transp-on)
thен show transp-on P' A
using \(\langle wqo-on Q B \rangle \) and \(\text{subset} \)
unfolding wqo-on-def transp-on-def P'-def by blast

from \(\langle wqo-on P A \rangle \) have almost-full-on P A
by (rule wqo-on-imp-almost-full-on)
from \(\langle wqo-on Q B \rangle \) have almost-full-on Q B
by (rule wqo-on-imp-almost-full-on)

show almost-full-on P' A

proof
fix f
assume \(*: \forall i::\text{nat}. f i \in A\)
from almost-full-on-imp-homogeneous-subseq [OF \langle almost-full-on P A \rangle this]
obtain g :: \text{nat} \Rightarrow \text{nat}
where \(g: \text{\land} i j. i < j \Rightarrow g i < g j \)
and \(**: \forall i. f (g i) \in A \land P (f (g i)) (f (g (Suc i))) \)
using \(*\) by auto
from chain-on-transp-on-less [OF \(** \langle \text{transp-on P A} \rangle \)]
have \(**: \text{\land} i j. i < j \Rightarrow P (f (g i)) (f (g j)) \).
let \(?g = \lambda i. h (f (g i)) \)
from \(*\) and \(\text{subset} \) have B: \(\text{\land} i. ?g i \in B \) by auto
with \(\langle \text{almost-full-on Q B} \rangle \) [unfolded almost-full-on-def good-def, THEN bspec, \(\text{of} \ ?g \)]
obtain i j :: \text{nat}
where \(i < j \) and Q (\(?g i\) (\(?g j\)) by blast
with \(** [\langle \text{\text{OF}} i < j \rangle] \) have P' (f (g i)) (f (g j))
by (auto simp: P'-def)
with \(g [\langle \text{\text{OF}} i < j \rangle] \) show good P' f by (auto simp: good-def)
qed

qed

lemma wqo-on-UNIV-nat:
wqo-on (op \leq) (UNIV :: \text{nat set})
unfolding wqo-on-def transp-on-def
using almost-full-on-UNIV-nat by simp

end
6 Kruskal’s Tree Theorem

theory Kruskal
imports Well-Quasi-Orders
begin

locale kruskal-tree =
 fixes \textit{F} :: \textit{('b × nat) set}
 \textit{mk} :: \textit{'b} ⇒ \textit{'}a list ⇒ (\textit{'a::size})
 \textit{root} :: \textit{'a} ⇒ \textit{'}b × nat
 \textit{args} :: \textit{'a} ⇒ \textit{'}a list
 \textit{trees} :: \textit{'a set}
 assumes \textit{size-arg} : \textit{t ∈ trees} ⇒ \textit{s ∈ set (args t)} ⇒ \textit{size s < size t}
 \textit{root-mk} : (\textit{f, length ts} ∈ \textit{F} ⇒ \textit{root (mk ts)} = (\textit{f, length ts})
 \textit{args-mk} : (\textit{f, length ts} ∈ \textit{F} ⇒ \textit{args (mk ts)} = \textit{ts}
 \textit{trees-root} : \textit{t ∈ trees} ⇒ \textit{root t ∈ F}
 \textit{trees-arity} : \textit{t ∈ trees} ⇒ \textit{length (args t)} = \textit{snd (root t)}
 \textit{trees-args} : \textit{⋀ s. t ∈ trees} ⇒ \textit{s ∈ set (args t)} ⇒ \textit{s ∈ trees}

begin

lemma \textit{mk-inject} [\textit{iff}]:
 \textit{assumes (f, length ss) ∈ F and (g, length ts) ∈ F}
 \textit{shows mk f ss = mk g ts}
 \textit{proof} −
 \{ \textit{assume mk f ss = mk g ts}
 \textit{then have root (mk f ss) = root (mk g ts)}
 \textit{and args (mk f ss) = args (mk g ts) by auto} \}
 \textit{show \$\textit{thesis}}
 \textit{using root-mk [OF assms(1)] and root-mk [OF assms(2)] and args-mk [OF assms(1)] and args-mk [OF assms(2)] by auto}
 \textit{qed}

inductive \textit{emb} for \textit{P}
where
 \textit{arg}: [(\textit{f, m}) ∈ \textit{F}; length ts = m; \forall t ∈ set ts. t ∈ trees; \textit{t ∈ set ts; emb P s t}] ⇒ \textit{emb P s (mk ts)} |
 \textit{list-emb}: [(\textit{f, m}) ∈ \textit{F}; (g, n) ∈ \textit{F}; length ss = m; length ts = n; \forall s ∈ set ss, s ∈ trees; \forall t ∈ set ts. t ∈ trees; \textit{P (f, m) (g, n); list-emb (emb P) ss ts}] ⇒ \textit{emb P (mk f ss) (mk g ts)}
 \textit{monos} list-emb-mono

lemma \textit{almost-full-on-trees}:
 \textit{assumes almost-full-on P F}
 \textit{shows almost-full-on (emb P) trees (is almost-full-on ?P ?A)}
 \textit{proof (rule ccontr)}
 \textit{interpret mbs ?A} .
 \textit{assume ¬ \$\textit{thesis}}
 \textit{from mbs [OF this] obtain m}

43
where bad: \(m \in \text{BAD} \ ?P \)
and \(\text{min: } \forall g. \ (m, g) \in \text{gseq} \longrightarrow \text{good} \ ?P \ g \ .. \)
then have trees: \(\lambda i. \ m \ i \in \text{trees} \) by auto

\[
\begin{align*}
def r & \equiv \lambda i. \ \text{root} \ (m \ i) \\
def a & \equiv \lambda i. \ \text{args} \ (m \ i) \\
def S & \equiv \bigcup \{ \text{set} \ (a \ i) \mid i. \ \text{True} \}
\end{align*}
\]

have \(m: \ \lambda i. \ m \ i = \text{mk} \ (\text{fst} \ (r \ i)) \) \((a \ i)\)
by (simp add: r-def a-def mk-root-args \([\text{OF \ trees}]\))

have lists: \(\forall i. \ a \ i \in \text{lists} \ S \) by (auto simp: a-def S-def)

have arity: \(\lambda i. \ \text{length} \ (a \ i) = \text{snd} \ (r \ i) \)
using trees-arity \([\text{OF \ trees}]\) by (auto simp: r-def a-def)

then have sig: \(\lambda i. \ (\text{fst} \ (r \ i), \ \text{length} \ (a \ i)) \in F \)
using trees-root \([\text{OF \ trees}]\) by (auto simp: a-def r-def)

have a-trees: \(\lambda i. \ \forall t \in \text{set} \ (a \ i). \ t \in \text{trees} \) by (auto simp: a-def trees-args \([\text{OF \ trees}]\))

have almost-full-on \(?P \ S \)

proof (rule ccontr)
 assume \(\neg \ ?thesis \)
 then obtain \(s :: \text{nat} \Rightarrow \text{\'a} \)
 where \(S: \ \lambda i. \ s \ i \in S \) and bad-s: \(\text{bad-s: } ?P \ s \) by (auto simp: almost-full-on-def)

\[
\begin{align*}
def n & \equiv \text{LEAST} \ n. \ \exists k. \ s \ k \in \text{set} \ (a \ n) \\
\text{have } \exists n. \ \exists k. \ s \ k \in \text{set} \ (a \ n) & \text{ using } S \text{ by (force simp: S-def)} \\
\text{from LeastI-ex } [\text{OF \ this}] & \text{ obtain } k \\
\text{where } \text{sk: } s \ k \in \text{set} \ (a \ n) & \text{ by (auto simp: n-def)} \\
\text{have args: } \lambda k. \ \exists m \geq n. \ s \ k \in \text{set} \ (a \ m) \\
\text{using } S & \text{ by (auto simp: S-def)} \text{ (metis Least-le n-def)}
\end{align*}
\]

\[
\begin{align*}
def m' & \equiv \lambda i. \ \text{if } i < n \ \text{then } m \ i \ \text{else } (k + (i - n)) \\
\text{have } m'\text{-less: } \lambda i. \ i < n \Longrightarrow m' \ i = m \ i & \text{ by (simp add: m'-def)} \\
\text{have } m'\text{-geq: } \lambda i. \ i \geq n \Longrightarrow m' \ i = s \ (k + (i - n)) & \text{ by (simp add: m'-def)}
\end{align*}
\]

have bad \(?P \ m' \)

proof
 assume good \(?P \ m' \)
 then obtain \(i \ j \) where \(i < j \) and \(\text{emb: } ?P \ (m' \ i) \ (m' \ j) \) by auto
 \{ assume \(j < n \)
 with \(i < j \) and \(\text{emb have } ?P \ (m \ i) \ (m \ j) \) by (auto simp: m'-less)
 with \(i < j \) and \(\text{bad have False by blast } \}
 moreover
 \{ assume \(n \leq i \)
 with \(i < j \) and \(\text{emb have } ?P \ (s \ (k + (i - n))) \ (s \ (k + (j - n))) \)
 and \(k + (i - n) < k + (j - n) \) by (auto simp: m'-geq)
 with bad-s have False by auto \}
 moreover

\[
\begin{align*}
\end{align*}
\]
\{
 \text{assume } i < n \text{ and } n \leq j \\
 \text{with } (i < j) \text{ and } \text{emb have } \ast: \iff \text{P } (m \ i) \ (s \ (k \ (j - n))) \text{ by } \text{(auto simp: m'-less m'-geq)} \\
 \text{with args obtain } l \text{ where } l \geq n \text{ and } \ast\ast: \iff s \ (k \ (j - n)) \in \text{set } (a \ l) \text{ by } \text{blast} \\
 \text{from emb.args } [\text{OF sig } (a \ l) \ - \ a\text{-trees } (a \ l) \ \ast\ast] \\
 \text{have } \iff \text{P } (m \ i) \ (m \ l) \text{ by } \text{(simp add: m)} \\
 \text{moreover have } i < l \text{ using } (i < n) \text{ and } (n \leq l) \text{ by } \text{auto} \\
 \text{ultimately have } \text{False using bad by blast } \} \\
 \text{ultimately show } \text{False using } (i < j) \text{ by } \text{arith} \\
 \text{qed} \\
 \text{moreover have } (m, m') \in \text{gseq} \\
 \text{proof} - \\
 \text{have } m \in \text{SEQ } ?A \text{ using } \text{trees by auto} \\
 \text{moreover have } m' \in \text{SEQ } ?A \\
 \text{using } \text{trees and } S \text{ and } \text{trees-args } [\text{OF trees}] \text{ by } \text{(auto simp: m'-def a-def S-def)} \\
 \text{moreover have } \forall i < n. \ m \ i = m' \ i \text{ by } \text{(auto simp: m'-less)} \\
 \text{moreover have } \text{size } (m' \ n) < \text{size } (m \ n) \\
 \text{by } \text{(auto simp: m'-geq root-mk } [\text{OF sig}] \text{ args-mk } [\text{OF sig}]) \\
 \text{ultimately show } \text{?thesis by } \text{(auto simp: gseq-def)} \\
 \text{qed} \\
 \text{ultimately show } \text{False using } \text{min by blast} \\
 \text{qed} \\
 \text{from } \text{almost-full-on-lists } [\text{OF this, THEN } \text{almost-full-on-imp-homogeneous-subseq,} \\
 \text{OF lists}] \\
 \text{obtain } \varphi :: \text{nat} \Rightarrow \text{nat} \\
 \text{where } \text{less: } \forall i \ j. \ i < j \Rightarrow \varphi \ i < \varphi \ j \\
 \text{and } \text{emb: } \forall i \ j. \ i < j \Rightarrow \text{list-emb } \iff \text{P } (a \ (\varphi \ i)) \ (a \ (\varphi \ j)) \text{ by } \text{blast} \\
 \text{have roots: } \exists i. \ r \ (\varphi \ i) \in F \text{ using } \text{trees } [\text{THEN trees-root}] \text{ by } \text{(auto simp: r-def)} \\
 \text{then have } r \circ \varphi \in \text{SEQ } F \text{ by } \text{auto} \\
 \text{with } \text{assms have } \text{good } P \ (r \circ \varphi) \text{ by } \text{(auto simp: almost-full-on-def)} \\
 \text{then obtain } i \ j \\
 \text{where } i < j \text{ and } P \ (r \ (\varphi \ i)) \ (r \ (\varphi \ j)) \text{ by } \text{auto} \\
 \text{with } \text{emb } [\text{OF } (i < j)] \text{ have } \iff \text{P } (m \ (\varphi \ i)) \ (m \ (\varphi \ j)) \\
 \text{using sig and arity and } \text{a-trees by } \text{(auto simp: m intro!: emb.list-emb)} \\
 \text{with } \text{less } [\text{OF } (i < j)] \text{ and } \text{bad show } \text{False by blast} \\
 \text{qed} \\
\}

\text{inductive-cases} \\
\text{emb-mk2 } [\text{consumes 1, case-names arg list-emb}]: \text{emb } P \ s \ (mk \ g \ ts) \\

\text{inductive-cases} \\
\text{list-emb-Nil2-cases: list-emb } P \ x s \ [] \text{ and} \\
\text{list-emb-Cons-cases: list-emb } P \ x s \ (y#ys) \\

\text{lemma list-emb-trans-right:} \\
\text{assumes list-emb } P \ x s \ ys \text{ and list-emb } (\lambda y \ z. \ P \ y \ z \wedge (\forall x. \ P \ x \ y \rightarrow P \ x \ z))
ys zs

shows list-emb P xs zs using assms(2, 1) by (induct arbitrary: xs) (auto elim!: list-emb-Nil2-cases list-emb-Cons-cases)

lemma emb-trans:
 assumes trans: \(\forall f g h. f \in F \rightarrow g \in F \rightarrow h \in F \rightarrow P f g \rightarrow P g h \rightarrow P f h \)
 assumes emb P s t and emb P t u
 shows emb P s u
using assms(3, 2)
proof (induct arbitrary: s)
 case (arg f m ts v)
 then show ?case by (auto intro: emb.arg)
next
 case (list-emb f m g n ss ts)
 note IH = this
 from emb P s (mk f ss)
 show ?case
 proof (cases rule: emb-mk2)
 case arg
 then show ?thesis using IH by (auto elim!: list-emb-set intro: emb.arg)
 next
 case list-emb
 then show ?thesis using IH by (auto intro: emb.intros dest: trans list-emb-trans-right)
 qed
qed

lemma transp-on-emb:
 assumes transp-on P F
 shows transp-on (emb P) trees
using assms and emb-trans [of P] unfolding transp-on-def by blast

lemma kruskal:
 assumes wqo-on P F
 shows wqo-on (emb P) trees
using almost-full-on-trees [of P] and assms by (metis transp-on-emb wqo-on-def)

end

end

theory Kruskal-Examples
imports Kruskal
begin

datatype 'a tree = Node 'a 'a tree list

fun node
where
node (Node f ts) = (f, length ts)

fun succs
where
 succs (Node f ts) = ts

inductive-set trees for A
where
 f ∈ A =⇒ ∀ t ∈ set ts. t ∈ trees A =⇒ Node f ts ∈ trees A

lemma [simp]:
 trees UNIV = UNIV
proof –
 { fix t :: 'a tree
 have t ∈ trees UNIV
 by (induct t) (auto intro: trees.intros) }
 then show ?thesis by auto
qed

interpretation kruskal-tree-tree!: kruskal-tree A × UNIV Node node succs trees A
for A
 apply (unfold-locales)
 apply auto
 apply (case-tac [|] t rule: trees.cases)
 apply auto
 by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-tree-tree.almost-full-on-trees
thm kruskal-tree-tree.kruskal

definition tree-emb A P = kruskal-tree-tree.emb A (prod-le P (λ -. True))

lemma wqo-on-trees:
 assumes wqo-on P A
 shows wqo-on (tree-emb A P) (trees A)
 using wqo-on-Sigma [OF assms wqo-on-UNIV, THEN kruskal-tree-tree.kruskal]
 by (simp add: tree-emb-def)

If the type 'a is well-quasi-ordered by P, then trees of type 'a tree are well-quasi-ordered by the homeomorphic embedding relation.

instantiation tree :: (wqo) wqo
begin
 definition s ≤ t ←→ tree-emb UNIV (op ≤) s t
 definition (s :: 'a tree) < t ←→ s ≤ t ∧ ¬ (t ≤ s)

instance
 by (rule class.wqo.of-class.intro)
 (auto simp: less-eq-tree-def [abs-def] less-tree-def [abs-def]
 intro: wqo-on-trees [of - UNIV, simplified])
datatype ('f, 'v) term = Var 'v | Fun 'f ('f, 'v) term list

fun root
where
 root (Fun f ts) = (f, length ts)

fun args
where
 args (Fun f ts) = ts

inductive-set gterms for F
where
 (f, n) ∈ F ⇒ length ts = n ⇒ ∀ s ∈ set ts. s ∈ gterms F ⇒ Fun f ts ∈ gterms F

interpretation kruskal-term!: kruskal-tree F Fun root args gterms F for F
 apply (unfold-locales)
 apply auto
 apply (case-tac [] t rule: gterms.cases)
 apply auto
 by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-term.almost-full-on-trees

inductive-set terms
where
 ∀ t ∈ set ts. t ∈ terms ⇒ Fun f ts ∈ terms

interpretation kruskal-variadic!: kruskal-tree UNIV Fun root args terms
 apply (unfold-locales)
 apply auto
 apply (case-tac [] t rule: terms.cases)
 apply auto
 by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-variadic.almost-full-on-trees

datatype 'a exp = V 'a | C nat | Plus 'a exp 'a exp

datatype 'a symb = v 'a | c nat | p

fun mk
where
 mk (v x) [] = V x |
 mk (c n) [] = C n |
 mk p [a, b] = Plus a b
fun \textit{rt} where
\begin{align*}
\textit{rt} (V x) &= (v x, 0::\textit{nat}) \\
\textit{rt} (C n) &= (c n, 0) \\
\textit{rt} (\text{Plus} \ a \ b) &= (p, 2)
\end{align*}

fun \textit{ags} where
\begin{align*}
\textit{ags} (V x) &= [] \\
\textit{ags} (C n) &= [] \\
\textit{ags} (\text{Plus} \ a \ b) &= [a, b]
\end{align*}

inductive-set \textit{exp}s where
\begin{align*}
V x &\in \textit{exp}s \\
C n &\in \textit{exp}s \\
\text{a} &\in \textit{exp}s \implies \text{b} &\in \textit{exp}s \implies \text{Plus} \ a \ b &\in \textit{exp}s
\end{align*}

lemma [simp];
assumes \text{length} \ ts = 2
shows \textit{rt} (\text{mk} \ p \ ts) = (p, 2)
using \textit{assms} by (\text{induct} \ ts) (\text{auto}, \text{case-tac} \ ts, \text{auto})

lemma [simp];
assumes \text{length} \ ts = 2
shows \textit{ags} (\text{mk} \ p \ ts) = ts
using \textit{assms} by (\text{induct} \ ts) (\text{auto}, \text{case-tac} \ ts, \text{auto})

interpretation \textit{kruskal-exp}!: \textit{kruskal-tree}
\{ (v x, 0) \mid x. \text{True} \} \cup \{ (c n, 0) \mid n. \text{True} \} \cup \{ (p, 2) \}
\textit{mk} \ rt \ \textit{ags} \ \textit{exp}s
apply (\text{unfold-locale}s)
apply \text{auto}
apply (\text{case-tac} [!] \ t \ \text{rule}: \textit{exp}s.\text{cases})
by \text{auto}

thm \textit{kruskal-exp}.\text{almost-full-on-trees}

hide-const (open) \textit{tree-emb} V C \text{Plus} v c p

end

7 Instances of Well-Quasi-Orders

theory \textit{Wqo-Instances}
imports \textit{Kruskal}
begin
7.1 The Option Type is Well-Quasi-Ordered

instantiation option :: (wqo) wqo

begin
 definition \(x \leq y \leftrightarrow \text{option-le} \) \(\leq \) \(x \) \(y \)
 definition \((x :: 'a \text{ option}) < y \leftrightarrow x \leq y \land \neg (y \leq x) \)

instance
 by (rule class.wqo.of-class.intro)
 (auto simp: less-eq-option-def [abs-def] less-option-def [abs-def])

end

7.2 The Sum Type is Well-Quasi-Ordered

instantiation sum :: (wqo, wqo) wqo

begin
 definition \(x \leq y \leftrightarrow \text{sum-le} \) \(\leq \) \(x \) \(y \)
 definition \((x :: 'a + 'b) < y \leftrightarrow x \leq y \land \neg (y \leq x) \)

instance
 by (rule class.wqo.of-class.intro)
 (auto simp: less-eq-sum-def [abs-def] less-sum-def [abs-def])

end

7.3 Pairs are Well-Quasi-Ordered

If types \('a\) and \('b\) are well-quasi-ordered by \(P\) and \(Q\), then pairs of type \('a \times 'b\) are well-quasi-ordered by the pointwise combination of \(P\) and \(Q\).

instantiation prod :: (wqo, wqo) wqo

begin
 definition \(p \leq q \leftrightarrow \text{prod-le} \) \(\leq \) \(p \) \(q \)
 definition \((p :: 'a \times 'b) < q \leftrightarrow p \leq q \land \neg (q \leq p) \)

instance
 by (rule class.wqo.of-class.intro)
 (auto simp: less-eq-prod-def [abs-def] less-prod-def [abs-def])

end

7.4 Lists are Well-Quasi-Ordered

If the type \('a\) is well-quasi-ordered by \(P\), then lists of type \('a \text{ list}\) are well-quasi-ordered by the homeomorphic embedding relation.

instantiation list :: (wqo) wqo

begin
 definition \(xs \leq ys \leftrightarrow \text{list-emb} \) \(\leq \) \(xs \) \(ys \)
 definition \((xs :: 'a \text{ list}) < ys \leftrightarrow xs \leq ys \land \neg (ys \leq xs) \)

instance
8 Multiset Extension of Orders (as Binary Predicates)

theory Multiset-Extension
imports
 Restricted-Predicates
 ~~/src/HOL/Library/Multiset
begin

definition multisets :: 'a set ⇒ 'a multiset set where
multisets A = {M. set-mset M ⊆ A}

lemma empty-multisets [simp]:
{#} ∈ multisets F
by (simp add: multisets-def)

lemma multisets-union [simp]:
M ∈ multisets A ⇒ N ∈ multisets A ⇒ M + N ∈ multisets A
by (auto simp: multisets-def)

definition mulex1 :: ('a ⇒ 'a ⇒ bool) ⇒ 'a multiset ⇒ 'a multiset ⇒ bool where
mulex1 P = (λM N. (M, N) ∈ mult1 {(x, y). P x y})

lemma mulex1-empty [iff]:
mulex1 P M (#) ←→ False
using not-less-empty [of M {(x, y). P x y}]
by (auto simp: mulex1-def)

lemma mulex1-add: mulex1 P N (M0 + {#a#}) ⇒
(∃M. mulex1 P M M0 ∧ N = M + {#a#}) ∨
(∃K. (∀b. b ∈# K → P b a) ∧ N = M0 + K)
using less-add [of N M0 a {(x, y). P x y}]
by (auto simp: mulex1-def)

lemma mulex1-self-add-right [simp]:
mulex1 P A (A + {#a#})
proof –
 let ?R = {(x, y). P x y}
 thm mult1-def
 have A + {#a#} = A + {#a#} by simp
 moreover have A = A + {#} by simp
 moreover have ∀ b. b ∈# {#} → (b, a) ∈ ?R by simp

51
ultimately have \((A, A + \{\#a\#\}) \in \text{mult1} \ ? R\)
unfolding \text{mult1-def} by blast
then show \(\text{thesis} \) by \((\text{simp add: mulex1-def})\)

qed

lemma \text{empty-mult1} [simp]:
\((\{\#\}, \{\#a\#\}) \in \text{mult1} \ ? R\)
proof
 have \(\{\#a\#\} = \{\#\} + \{\#a\#\}\) by simp
 moreover have \(\{\#\} = \{\#\} + \{\#\}\) by simp
 moreover have \(\forall \ b \in\ \# \ {\#} \rightarrow (b, a) \in R\) by simp
 ultimately show \(\text{thesis}\) unfolding \text{mult1-def} by force
qed

lemma \text{empty-mulex1} [simp]:
\text{mulex1} \ P \ {\#} \ {\#a\#} \text{ using empty-mult1 [of a} \{(x, y) \ P x y\}\] by \((\text{simp add: mulex1-def})\)

definition \text{mulex-on} :: \((\prime x \Rightarrow \prime y \Rightarrow \text{bool}) \Rightarrow \prime x \text{ multiset} \Rightarrow \prime x \text{ multiset} \Rightarrow \text{bool}\)
where
\text{mulex-on} \ P \ A = \text{restrict-to} (\text{mulex1} \ P) (\text{multisets} A)

abbreviation \text{mulex} :: \((\prime x \Rightarrow \prime y \Rightarrow \text{bool}) \Rightarrow \prime x \text{ multiset} \Rightarrow \prime x \text{ multiset} \Rightarrow \text{bool}\)
where
\text{mulex} \ P \equiv \text{mulex-on} \ P \ \text{UNIV}

lemma \text{mulex-on-induct} [consumes 1, case-names base step, induct pred: mulex-on]:
assumes \text{mulex-on} \ P \ A \ M \ N
and \(\forall M. N. \ [M \in \text{multisets} A; N \in \text{multisets} A; \text{mulex1} \ P \ M \ N] \implies Q M N\)
and \(\forall L. N. \ [\text{mulex-on} \ P \ A \ L \ M; Q L M; N \in \text{multisets} A; \text{mulex1} \ P \ M \ N] \implies Q L N\)
shows \(Q M N\)
using \text{assms unfolding mulex-on-def by (induct) blast}++

lemma \text{mulex-on-self-add-singleton-right} [simp]:
assumes \(a \in A\) and \(M \in \text{multisets} A\)
shows \text{mulex-on} \ P \ A \ M \ (M + \{\#a\#\})
proof
 have \text{mulex1} \ P \ M \ (M + \{\#a\#\}) \ by simp
 with \text{assms} have \text{restrict-to} (\text{mulex1} \ P) (\text{multisets} A) M \ (M + \{\#a\#\})
 by \((\text{auto simp: multisets-def})\)
 then show \(\text{thesis}\) unfolding \text{mulex-on-def} by blast
qed

lemma \text{singleton-multisets [iff]}:
\(\{\#x\#\} \in \text{multisets} A \iff x \in A\)
by \((\text{auto simp: multisets-def})\)

lemma \text{union-multisetsD}:
assumes $M + N \in \text{multisets } A$
shows $M \in \text{multisets } A \land N \in \text{multisets } A$
using assms by (auto simp: multisets-def)

lemma mulex-on-multisetsD [dest]:
assumes mulex-on $P \; F \; M \; N$
shows $M \in \text{multisets } F \land N \in \text{multisets } F$
using assms by (induct) auto

lemma union-multisets-iff [iff]:
$M + N \in \text{multisets } A \iff M \in \text{multisets } A \land N \in \text{multisets } A$
by (auto dest: union-multisetsD)

lemma mulex-on-trans:
mulex-on $P \; A \; L \; M \Rightarrow mulex-on \; P \; A \; M \; N \Rightarrow mulex-on \; P \; A \; L \; N$
by (auto simp: mulex-on-def)

lemma transp-on-mulex-on:
transp-on $(\text{mulex-on } P \; A)$ B
using mulex-on-trans [of $P \; A$] by (auto simp: transp-on-def)

lemma mulex-on-add-right [simp]:
assumes mulex-on $P \; A \; M \; N$ and $a \in A$
shows mulex-on $P \; A \; M \; (N + \{#\,a\#\})$
proof –
from assms have $a \in A$ and $N \in \text{multisets } A$ by auto
then have mulex-on $P \; A \; N \; (N + \{#\,a\#\})$ by simp
with $\langle\text{mulex-on } P \; A \; M \; N\rangle$ show $?\text{thesis}$ by (rule mulex-on-trans)
qed

lemma empty-mulex-on [simp]:
assumes $M \neq \{\#\}$ and $M \in \text{multisets } A$
shows mulex-on $P \; A \; \{\#\} \; M$
using assms
proof (induct M)
case (add $M \; a$)
show $?case$
proof (cases $M = \{\#\}$)
 assume $M = \{\#\}$
 with add show $?\text{thesis}$ by (auto simp: mulex-on-def)
next
 assume $M \neq \{\#\}$
 with add show $?\text{thesis}$ by (auto intro: mulex-on-trans)
qed
qed simp

lemma mulex-on-self-add-right [simp]:
assumes $M \in \text{multisets } A$ and $K \in \text{multisets } A$ and $K \neq \{\#\}$
shows mulex-on $P \; A \; M \; (M + K)$
using assms

proof (induct K)
 case empty
 then show ?case by (cases K = {#}) auto
next
 case (add M a)
 show ?case
 proof (cases M)
 assume M = {#}
 with add show ?thesis by auto
 next
 assume M ≠ {#}
 with add show ?thesis
 by (auto dest: mulex-on-add-right simp add: ac-simps)
 qed
qed

lemma mult1-singleton [iff]:
 (\{#x#\}, \{#y#\}) ∈ mult1 R ←→ (x, y) ∈ R
proof
 assume (x, y) ∈ R
 then have \{#y#\} = {#} + \{#y#\}
 and \{#x#\} = {#} + \{#x#\}
 and ∀ b. b ∈ # \{#x#\} → (b, y) ∈ R
 then show ((#x#), (#y#)) ∈ mult1 R unfolding mult1-def by blast
next
 assume ((#x#), (#y#)) ∈ mult1 R
 then obtain M0 K a
 where \{#y#\} = M0 + \{#a#\}
 and \{#x#\} = M0 + K
 and ∀ b. b ∈ # K → (b, a) ∈ R
 unfolding mult1-def by blast
 then show (x, y) ∈ R
 by (auto simp: single-is-union)
qed

lemma mulex1-singleton [iff]:
mulex1 P \{#x#\} \{#y#\} ←→ P x y
using mult1-singleton [of x y \{(x, y). P x y\}]
by (simp add: mulex1-def

lemma singleton-mulex-onI:
P x y x∈A y∈A mulex-on P A \{#x#\} \{#y#\}
by (auto simp: mulex-on-def)

lemma reflclp-mulex-on-add-right [simp]:
 assumes (mulex-on P A)≈= M N and M ∈ multisets A and a ∈ A
 shows mulex-on P A M (N + (#a#))
using assms by (cases M = N) simp-all

lemma reflclp-mulex-on-add-right' [simp]:
 assumes (mulex-on P A)≈= M N and M ∈ multisets A and a ∈ A
 shows mulex-on P A M ((#a#) + N)
using reflclp-mulex-on-add-right [OF assms] by (simp add: ac-simps)

lemma mulex-on-union-right [simp]:
 assumes mulex-on P F A B and K ∈ multisets F
 shows mulex-on P F A (K + B)
using assms
proof (induct K)
case (add K a)
 then have a ∈ F and mulex-on P F A (B + K)
 by (auto simp: multisets-def ac-simps)
 then have mulex-on P F A ((B + K) + {#a#}) by simp
 then show ?case by (simp add: ac-simps)
qed simp

lemma mulex-on-union-right ′ [simp]:
 assumes mulex-on P F A B and K ∈ multisets F
 shows mulex-on P F A (B + K)
using mulex-on-union-right [OF assms] by (simp add: ac-simps)

Adapted from wf ?r ⇒ ∀ M. M ∈ Wellfounded.acc (mult1 ?r) in Multiset.

lemma accessible-on-mulex1-multisets:
 assumes wf: wfP-on P A
 shows ∀ M ∈ multisets A. accessible-on (mulex1 P) (multisets A) M
proof
 let ?P = mulex1 P
 let ?A = multisets A
 let ?acc = accessible-on ?P ?A
 { fix M M0 a
 assume M0: ?acc M0
 and a ∈ A
 and M0 ∈ ?A
 and wf-hyp: ∀ b. [b ∈ A; P b a] ⇒ (∀ M. ?acc (M) → ?acc (M + {#b#}))
 and acc-hyp: ∀ M. M ∈ ?A ∧ ?P M M0 ⇒ ?acc (M + {#a#})
 then have M0 + {#a#} ∈ ?A by (auto simp: multisets-def)
 then have ?acc (M0 + {#a#})
 proof (rule accessible-onI [of M0 + {#a#}])
 fix N
 assume N ∈ ?A
 and ?P N (M0 + {#a#})
 then have (∀ M. M ∈ ?A ∧ ?P M M0 ∧ N = M + {#a#} ∧ (∃ K. ∀ b ∈ #. (∀ K. (∀ b ∈ # K → P b a) ∧ N = M0 + K))
 using mulex1-add [of P N M0 a] by (auto simp: multisets-def)
 then show ?acc (N) by (simp only: N)
 proof (elim exE disjE conjE)
 fix M assume M ∈ ?A and ?P M M0 and N: N = M + {#a#}
 from acc-hyp have M ∈ ?A ∧ ?P M M0 ⇒ ?acc (M + {#a#}) ..
 with M ∈ ?A and (?P M M0) have ?acc (M + {#a#}) by blast
 then show ?acc (N) by (simp only: N)
 }
next
 fix K
 assume $N: N = M0 + K$
 assume $\forall b, b \in \# K \rightarrow P b a$
moreover from N and $\forall N \in \# A$ have $K \in \# A$ by (auto simp: multisets-def)
ultimately have $\forall N \in \# A$ have $K \in \# A$ by (auto simp: multisets-def)
proof (induct K)
 case empty
 from $M0$ show $\forall \{\#\}$ by simp
next
 case (add K x)
 from add.prems have $x \in A$ and $P x a$ by (auto simp: multisets-def)
with wf-hyp have $\forall M. \forall \{\#\} \rightarrow \forall \{\#\}$ by blast
moreover from add have $\forall \{\#\}$ by (auto simp: multisets-def)
ultimately have $\forall \{\#\}$ by auto
then show $\forall \{\#\}$ by (simp only: add.assoc)
qed
then show $\forall \{\#\}$ by (simp only: N)
qed

\{ note tedious-reasoning = this \}

fix M
assume $M \in \# A$
then show $\forall \#$ by (auto simp: multisets-def)
proof (induct M)
 case empty
 from $M0$ have $\forall \#$ by simp
next
 case (add M a)
 from add have $a \in A$ by (auto simp: multisets-def)
with wf have $\forall M. \forall \# \rightarrow \forall \#$ by blast
proof (induct)
 case (less a
 then have $r: \forall \# \rightarrow \forall \#$ by (auto simp: multisets-def)
by auto
 from $M0$ have $\forall \#$ by simp
proof (intro allI impI)
 fix M'
 assume $\forall \#$
moreover then have $\forall \#$ by (blast dest: accessible-on-imp-mem)
ultimately show $\forall \#$ by (intro tedious-reasoning [OF $a \in A - r$, auto])
qed
qed
with (?acc (M) \show ?acc (M + \{#a##\}) by blast
qed

lemmas wfp-on-mulex1-multisets =
 accessible-on-mulex1-multisets [THEN accessible-on-imp-wfp-on]

lemmas irreflp-on-mulex1 =
 wfp-on-mulex1-multisets [THEN wfp-on-imp-irreflp-on]

lemma wfp-on-mulex-on-multisets:
 assumes wfp-on P A
 shows wfp-on (mulex-on P A) (multisets A)
 using wfp-on-mulex1-multisets [OF assms]
 by (simp only: mulex-on-def wfp-on-restrict-to-tranclp-wfp-on-conv)

lemmas irreflp-on-mulex-on =
 wfp-on-mulex-on-multisets [THEN wfp-on-imp-irreflp-on]

lemma mulex1-union:
 mulex1 P M N \implies mulex1 P (K + M) (K + N)
 by (auto simp: mulex1-def mult1-union)

lemma mulex-on-union:
 assumes mulex-on P A M N and K \in multisets A
 shows mulex-on P A (K + M) (K + N)
 using assms
 proof (induct)
 case (base M N)
 then have mulex1 P (K + M) (K + N) by (blast dest: mulex1-union)
 moreover from base have (K + M) \in multisets A
 and (K + N) \in multisets A by (auto simp: multisets-def)
 ultimately have restrict-to (mulex1 P) (multisets A) (K + M) (K + N) by auto
 then show ?case by (auto simp: mulex-on-def)
 next
 case (step L M N)
 then have mulex1 P (K + M) (K + N) by (blast dest: mulex1-union)
 moreover from step have (K + M) \in multisets A and (K + N) \in multisets
 A by blast+
 ultimately have (restrict-to (mulex1 P) (multisets A))++ (K + M) (K + N)
 by auto
 moreover have mulex-on P A (K + L) (K + M) using step by blast
 ultimately show ?case by (auto simp: mulex-on-def)
 qed

lemma mulex-on-union†:
 assumes mulex-on P A M N and K \in multisets A

57
shows \(mulex-on \ P \ A \ (M + K) \ (N + K) \)
using \(mulex-on-union \ [OF \ \text{assms}] \) by \(\text{simp add: ac-simps} \)

lemma \(\text{union-mulex-on-mono} \):
\[
mulex-on \ P \ F \ A \ C \ \Rightarrow \ mulex-on \ P \ F \ B \ D \ \Rightarrow \ mulex-on \ P \ F \ (A + B) \ (C + D)
\]
by \(\text{metis mulex-on-multisetsD mulex-on-trans mulex-on-union mulex-on-union}' \)

lemma \(\text{union-mulex-on-mono1} \):
\[
A \in \multisets \ F \ \Rightarrow \ (mulex-on \ P \ F) = A \ C \ \Rightarrow \ mulex-on \ P \ F \ B \ D \ \Rightarrow \ mulex-on \ P \ F \ (A + B) \ (C + D)
\]
by \(\text{auto intro: union-mulex-on-mono mulex-on-union} \)

lemma \(\text{union-mulex-on-mono2} \):
\[
B \in \multisets \ F \ \Rightarrow \ mulex-on \ P \ F \ A \ C \ \Rightarrow \ (mulex-on \ P \ F) = B \ D \ \Rightarrow \ mulex-on \ P \ F \ (A + B) \ (C + D)
\]
by \(\text{auto intro: union-mulex-on-mono mulex-on-union} \)

lemma \(\text{mult1-mono} \):
\[
\text{assumes} \ \forall \ x \ y. \ [(x \in A; \ y \in A; (x, y) \in R)] \ \Rightarrow \ (x, y) \in S
\]
\[
\text{and} \quad M \in \multisets \ A
\]
\[
\text{and} \quad N \in \multisets \ A
\]
\[
\text{and} \quad \multiset1 \ R
\]
shows \((M, N) \in \multiset1 \ S \)
using \(\text{assms unfolding mult1-def multisets-def} \)
by \(\text{auto} \) \(\text{(metis (full-types) mem-set-mset-iff set-mp)} \)

lemma \(\text{mulex1-mono} \):
\[
\text{assumes} \ \forall \ x \ y. \ [(x \in A; \ y \in A; P x y)] \ \Rightarrow \ Q x y
\]
\[
\text{and} \quad M \in \multisets \ A
\]
\[
\text{and} \quad N \in \multisets \ A
\]
\[
\text{and} \quad \text{mulex1} \ P \ M \ N
\]
shows \(\text{mulex1} \ Q \ M \ N \)
using \(\text{mult1-mono} \ [of \ A \ \{(x, y). \ P \ x \ y\} \ \{(x, y). \ Q \ x \ y\} \ M \ N] \)
and \(\text{assms unfolding mulex1-def by blast} \)

lemma \(\text{mulex-on-mono} \):
\[
\text{assumes} \ \ast: \ \forall \ x \ y. \ [(x \in A; \ y \in A; P x y)] \ \Rightarrow \ Q x y
\]
\[
\text{and} \quad \text{mulex-on} \ P \ A \ M \ N
\]
shows \(\text{mulex-on} \ Q \ A \ M \ N \)

proof --
let \(\text{rel} = \lambda P. \ (\text{restrict-to} \ (\text{mulex1} \ P) \ (\text{multisets} \ A)) \)
from \(\text{mulex-on} \ P \ A \ M \ N \) have \((?\text{rel} \ P)^++ \ M \ N \) by \(\text{simp add: mulex-on-def} \)
then have \((?\text{rel} \ Q)^++ \ M \ N \)
proof \(\text{(induct rule: tranclp.induct)} \)
\[
\text{case} \ (\text{r-into-trancl} \ M \ N)
\]
then have \(M \in \multisets \ A \) and \(N \in \multisets \ A \) by \(\text{auto} \)
from \(\text{mulex1-mono} \ [OF \ \ast \ \text{this}] \) and \(\text{r-into-trancl} \)
show \(?\text{case by auto} \)

58
next
 case (trancl-into-trancl L M N)
 then have \(M \in \text{multisets} A \) and \(N \in \text{multisets} A \) by auto
 from mulex1-mono [OF * this] and trancl-into-trancl
 have \(\rel Q M N \) by auto
 with \((\rel Q)^+ L M \) show ?case by (rule tranclp.trancl-into-trancl)
 qed
then show ?thesis by (simp add: mulex-on-def)
qed

lemma mult1-reflcl:
 assumes \((M, N) \in \text{mult1} R\)
 shows \((M, N) \in \text{mult1} (R=)\)
 using assms by (auto simp: mult1-def)

lemma mulex1-reflclp:
 assumes mulex1 P M N
 shows mulex1 \((P=) M N\)
 using mulex1-mono [of UNIV P P= M N, OF - - - assms]
 by (auto simp: multisets-def)

lemma mulex-on-reflclp:
 assumes mulex-on P A M N
 shows mulex-on \((P= A M N)\)
 using mulex-on-mono [OF - assms, of P=] by auto

lemma surj-on-multisets-mset:
 \(\forall M \in \text{multisets} A. \exists xs \in \text{lists} A. M = \text{mset} xs \)
proof
 fix \(M \)
 assume \(M \in \text{multisets} A \)
 then show \(\exists xs \in \text{lists} A. M = \text{mset} xs \)
 proof (induct \(M \))
 case empty show ?case by simp
 next
 case (add M a)
 then obtain \(xs \) where \(xs \in \text{lists} A \) and \(M = \text{mset} xs \) by auto
 moreover have \(M + \{\#a\#\} = \text{mset} (a \# xs) \) by simp
 moreover have \(a \# xs \in \text{lists} A \) using \(\langle xs \in \text{lists} A \rangle \) and add by auto
 ultimately show ?case by blast
 qed
qed

lemma image-mset-lists [simp]:
 \(\text{mset} \{ \text{lists} A \} = \text{multisets} A \)
using surj-on-multisets-mset [of A]
by auto (metis mem-Collect-eq multisets-def set-mset-mset subsetI)

lemma multisets-UNIV [simp]: \(\text{multisets} \text{UNIV} = \text{UNIV} \)
lemma non-empty-multiset-induct [consumes 1, case-names singleton add]:
assumes \(M \neq \{\#\} \)
and \(\forall x. P \{\#x\#\} \)
and \(\forall M x. P M \implies P (M + \{\#x\#\}) \)
shows \(P M \)
using assms by (induct \(M \)) (auto, metis union-is-single)

lemma mulex-on-all-strict:
assumes \(X \neq \{\#\} \)
assumes \(X \in \text{multisets } A \) and \(Y \in \text{multisets } A \)
and \(\exists y. y \in \# Y \implies (\exists x. x \in \# X \land P y x) \)
shows \(\text{mulex-on } P A Y X \)
using assms
proof (induction \(X \) arbitrary: \(Y \) rule: non-empty-multiset-induct)
case (singleton \(x \))
then have \(\text{mulex1 } P Y \{\#x\#\} \)
unfolding mulex1-def mult1-def
by auto (metis count-single empty-neutral (1) less-nat-zero-code singleton.prems(3))
with singleton show ?case by (auto simp: mulex-on-def)
next
case (add \(M x \))
let \(?Y = \{ y \in \# Y. \exists x. x \in \# M \land P y x \} \)
let \(?Z = Y - ?Y \)
have \(Y = ?Z + ?Y \) by (subt multiset-eq-iff) auto
from \(\exists Y \in \text{multisets } A \) have \(?Y \in \text{multisets } A \) by (metis multiset-partition union-multisets-iff)
moreover have \(\forall y. y \in \# ?Y \implies (\exists x. x \in \# M \land P y x) \) by auto
moreover have \(M \in \text{multisets } A \) using add by auto
ultimately have \(\text{mulex-on } P A ?Y M \) using add by blast
moreover have \(\text{mulex-on } P A ?Z \{\#x\#\} \)
proof –
have \(\{\#x\#\} = \{\#\} + \{\#x\#\} \) by simp
moreover have \(?Z = \{\#\} + ?Z \) by simp
moreover have \(\forall y. y \in \# ?Z \implies P y x \)
using add.prems by (auto, metis (full-types) less-not-refl3)
ultimately have \(\text{mulex1 } P \{\#x\#\} \) unfolding mulex1-def mult1-def by blast
moreover have \(\{\#x\#\} \in \text{multisets } A \) using add.prems by auto
moreover have \(?Z \in \text{multisets } A \)
using \(Y \in \text{multisets } A \) by (metis diff-union-cancelL multiset-partition union-multisetsD)
ultimately show \(\text{thesis} \) by (auto simp: mulex-on-def)
qed
ultimately have \(\text{mulex-on } P A (?Y + ?Z) (M + \{\#x\#\}) \) by (rule union-mulex-on-mono)
then show ?case using \(Y \) by (simp add: ac-simps)
qed

The following lemma shows that the textbook definition (e.g., “Term Rewrit-
ing and All That”) is the same as the one used below.

lemma `diff-set-Ex-iff`:
\[X \neq \{\#\} \land X \leq \# M \land N = (M - X) + Y \iff X \neq \{\#\} \land (\exists Z. M = Z + X \land N = Z + Y) \]
by (auto) (`metis add-diff-cancel-left` multiset-diff-union-assoc union-commute)

Show that `mulex-on` is equivalent to the textbook definition of multiset-extension for transitive base orders.

lemma `mulex-on-alt-def`:
assumes `trans`: `transp-on P A`
shows `mulex-on P A M N \iff M \in \text{multisets } A \land N \in \text{multisets } A \land (\exists X Y Z.
\begin{align*}
X &\neq \{\#\} \land N = Z + X \land M = Z + Y \land (\forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x))
\end{align*}
) (is `?P M N \iff ?Q M N`)
proof
assume `?P M N` then show `?Q M N`
proof (induct `M N`)
case `base M N`
then obtain `a M0 K` where `N = M0 + \{\#a\#\}`
and `M = M0 + K`
and `*: \forall b. b \in \# K \longrightarrow P b a`
and `M \in \text{multisets } A` and `N \in \text{multisets } A` by (auto simp: mulex1-def `mult1-def`)
moreover then have `\{\#a\#\} \in \text{multisets } A` and `K \in \text{multisets } A` by auto
moreover have `\{\#a\#\} \neq \{\#\}` by auto
moreover have `N = M0 + \{\#a\#\}` by fact
moreover have `M = M0 + K` by fact
moreover have `\forall y. y \in \# K \longrightarrow (\exists x. x \in \# (\{\#a\#\} \land P y x))` using `*` by auto
ultimately show `?case` by blast
next
case `step L M N`
then obtain `X Y Z`
where `L \in \text{multisets } A` and `M \in \text{multisets } A` and `N \in \text{multisets } A`
and `X \in \text{multisets } A` and `Y \in \text{multisets } A`
and `M = Z + X`
and `L: L = Z + Y` and `X \neq \{\#\}`
and `Y: \forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x)`
and `mulex1 P M N`
by `blast`
from `mulex1 P M N` obtain `a M0 K`
where `N: N = M0 + \{\#a\#\}` and `M': M = M0 + K`
and `*: \forall b. b \in \# K \longrightarrow P b a` unfolding `mulex1-def` `mult1-def` by `blast`
have `L': L = (M - X) + Y` by (simp `add: L M`)
have `K: \forall y. y \in \# K \longrightarrow (\exists x. x \in \# (\{\#a\#\} \land P y x))` using `*` by auto

The remainder of the proof is adapted from the proof of Lemma 2.5.4. of the book “Term Rewriting and All That.”
let $\exists X = \{#a\} + (X - K)$
let $\exists Y = (K - X) + Y$

have $L \in multisets A$ and $N \in multisets A$ by fact+
moreover have $\exists X \neq \{\#\} \land (\exists Z. N = Z + \exists X \land L = Z + \exists Y)$
proof
 have $\exists X \neq \{\#\}$ by auto
moreover have $\exists X \leq \# N$
 using $M N M'$ by (simp add: add.commute [of $\{#a\}$])
 (metis Multiset.diff-le_self add.commute add-diff-cancel-right)
moreover have $L = (N - \exists X) + \exists Y$
proof (rule multiset-eqI)
 fix $x :: 'a$
 let $?c = \lambda M. count M x$
 let $?ic = \lambda x. \text{int}(?c x)$
 from ($\exists X \leq \# N$) have $*: \exists c (\{#a\} + ?c (X - K) \leq ?c N$
 by (simp add: subseteq-mset-def)
 from $*$ have $**: \exists c (X - K) \leq ?c M0$ unfolding N by simp
 have $?ic (N - \exists X + \exists Y) = \text{int}(\exists c N - \exists c \exists X) + \exists Y$ by simp
also have $\ldots = \text{int}(\exists c N - (\exists c \{#a\} + \exists c (X - K))) + \exists c (K - X) + \exists Y$
also have $\ldots = \exists c N - (\exists c \{#a\} + \exists c (X - K)) + \exists c (K - X) + \exists Y$
 using zdiff-int [OF $*$] by simp
also have $\ldots = (\exists c N - \exists c \{#a\}) - \exists c (X - K) + \exists c (K - X) + \exists Y$
also have $\ldots = (\exists c N - \exists c \{#a\}) + (\exists c (K - X) - \exists c (X - K)) + \exists Y$
also have $\ldots = \exists c L$
 unfolding $L'M'N$
 using zdiff-int [OF $**$]
 by simp
finally show $?c L = ?c (N - \exists X + \exists Y)$ by simp
qed
ultimately show $?c (N - \exists X + \exists Y)$ by (metis diff-set-Ex-iff)
qed
moreover have $\forall y. y \in \# \exists Y \longrightarrow (\exists x. x \in \# \exists X \land P y x)$
proof (intro allIImpl)
fix y assume $y \in \# \exists Y$
then have $y \in \# K - X \lor y \in \# Y$ by auto
then show $\exists x. x \in \# \exists X \land P y x$ by auto
proof
 assume $y \in \# K - X$
 with K show $?thesis$ by force
next
 assume $y \in \# Y$
 with Y obtain x where $x \in \# X$ and $P y x$ by blast

62
9 Multiset Extension Preserves Well-Quasi-Orders
case (list-emb-Cons2 x y xs ys)
then show ?case
 by (auto intro: union-mulex-on-mono mulex-on-union'
 intro!: singleton-mulex-onI mulex-on-union
 simp: multisets-def)
qed

The (reflexive closure of the) multiset extension of an almost-full relation is
almost-full.

lemma almost-full-on-multisets:
 assumes almost-full-on P A
 shows almost-full-on (mulex-on P A) = (multisets A)
proof
 let ?P = (mulex-on P A) =
 from almost-full-on-hom [OF - almost-full-on-lists, of A P ?P mset,
 OF list-emb-imp-refclp-mulex-on, simplified]
 show ?thesis using assms by blast
qed

lemma wqo-on-multisets:
 assumes wqo-on P A
 shows wqo-on (mulex-on P A) = (multisets A)
proof
 from transp-on-mulex-on [of P A multisets A]
 show transp-on (mulex-on P A) = (multisets A)
 unfolding transp-on-def by blast
next
 from almost-full-on-multisets [OF assms [THEN wqo-on-imp-almost-full-on]]
 show almost-full-on (mulex-on P A) = (multisets A).
qed

end

References

doi:10.1017/S0305004100003844.